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How Canl..?

@ Move around in the physical world (navigation)

@ Play and win a game
@ Control the throughput of a power plant (process control)
@ Manage a portfolio (finance)

@ Medical diagnosis and treatment
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@ RL: A class of learning problems in which an agent
interacts with a dynamic, stochastic, and incompletely
known environment

@ Goal: Learn an action-selection strategy, or policy, to
optimize some measure of its long-term performance

@ Interaction: Modeled as a MDP

A



MDP
@ An MDP M is atuple (¥. A.R.P. Py).

@ X: set of states
@ A: set of actions
@ R(x.a): reward random variable, r(x.a) =E[R(x.a)]

@ P(-|x. a): transition probability distribution

@ Py(-): initial state distribution

@ Stationary Policy: a distribution over actions, conditioned
on the current state y(-|x)
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| For a given policy

Return

oC

D*(x) =Y ~'R(Xt.ar) | Xo=X. p
t=0
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For a given policy

Return

D“(x) = 3" +*R(xe.a1) | Xo = X. 1
t=0

Risk-Neutral Objective

" = argmax 3~ Po(x)V*(x)

H X

where V*(x) =E[DV(x)]. R
A



For a given policy

Return

oC

D*(x)=) +'R(X.ar) | Xo=X.
t=0

Risk-Neutral Objective (for simplicity)

u* = argmax V*(x°)
T

x° is the initial state, i.e., Py(x) = 5(x — x°).
0



For a given policy

Average Reward

1 T—1
plp) = Jim —E [Z R | Ml
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For a given policy u

Average Reward

o) = g@mfﬂ[zﬂrm] = Y #(x.a)r(x.a)
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For a given policy

Average Reward
ou) = Jim —E [Z R | ,u] = ) m(x.a)r(x.a)
X.a

m(x. a): stationary dist. of state-action pair (x, a) under palicy .

Risk-Neutral Objective

p* = argmax p(p)
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return random variable

D*(x)=) +'R(x.ar) [ Xo=X. p
=0
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return random variable

D*(x)=) +'R(x.ar) | Xo=X. p
=0

@ a criterion that penalizes the variability induced by a given policy

N
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refurn random variable

D*(x) =) 7'R(xt.ar) | Xo=X. p
=4

@ a criterion that penalizes the variability induced by a given policy

@ minimize some measure of risk as well as maximizing a usual
optimization criterion

Fa)
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Objective: to optimize a risk-sensitive criterion such as

@ expected exponential utility (Howard & Matheson 1972)
@ variance-related measures (Sobel 1982; Filar et al. 1989)

@ percentile performance (Filar et al. 1995)
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Objective: to optimize a risk-sensitive criterion such as

@ expected exponential utility (Howard & Matheson 1972)
@ variance-related measures (Sobel 1982; Filar et al. 1989)

@ percentile performance (Filar et al. 1995)

Open Question ???

construct conceptually meaningful and computationally tractable criteria
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Objective: to optimize a risk-sensitive criterion such as

@ expected exponential utility (Howard & Matheson 1972)
@ variance-related measures (Sobel 1982; Filar et al. 1989)

@ percentile performance (Filar et al. 1995)

Open Question ?2??

I construct conceptually meaﬁingful and computationally tractable criteria l

mainly negative results
(e.g., Sobel 1982; Filar et al., 1989; Mannor & Tsitsiklis, 2011)
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long history in operations research
@ most work has been in the context of MDPs (model is known)

@ much less work in reinforcement learning (RL) framework

Risk-Sensitive RL
@ expected exponential utility (Borkar 2001, 2002)

@ several variance-related measures (Tamar et al., 2012)

e policy gradient for the stochastic shortest path problem

A
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For discounted and average reward MDPs, we

@ define a measure of variability for a policy

@ a set of (variance-related) risk-sensitive criteria

©@ propose actor-critic algorithms to optimize the risk-sensitive criteria

e define a class of parameterized stochastic policies
@ estimate the gradient of the risk-sensitive criteria
e update the policy parameters in the ascent direction

© establish the asymptotic convergence of the algorithms

©Q demonstrate the usefulness of the algorithms in a traffic signal
control problem
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Discounted Reward Setting

A



Return .
D*(x) =) +'R(X.ar) | Xo=X. p
=0

Mean of Return (value function)

V¥ (x) = E[D¥(x)]

Variance of Return (measure of variability)
A (x) = E[D*(x)?] — V¥(x)? = U (x) — V*(x)?
Fal



Risk-Sensitive Criteria
@ Maximize V#(x% st A“(x%) <a
@ Minimize A*(x%) st V#(x%) >a

© Maximize the Sharpe Ratio: V*(x%)/,/A“(x9)

© Maximize V#(x%) —aN*(x?)

A



Return

o

D¥(x) =) +'R(X.ar) | Xo=X.
t=0

Mean of Return (value function)

V¥ (x) = E[D¥(x)]

Variance of Return (measure of variability)
N(x) = E[D*(x)?] — V¥(x)? = UF(x) — V*(x)?
A



Risk-Sensitive Criteria
@ Maximize V#(x%) st A*(x%) <a
@ Minimize M (x%) st V(X% >a

© Maximize the Sharpe Ratio: V*(x%)/\/A#(x9)

©Q Maximize V#(x%) —aN*(x9)
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max min L(4.)) 2 _VA(x%) + A(N(x°) — a)

A class of parameterized stochastic policies

{u(-x;0), x € X, 6 € © CR™}
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Optimization Problen
max ve(x9) st M%) <a

max min L(6.\) 2 _VAx0) + A(N(x%) — a)

A class of parameterized stochastic policies

{u(-|x;0). xe X, 0 c© CR™}

One needs to evaluate VyL(#. A) and V,L(f. \) to tune ¢# and A

A
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Computing the Gradient V,L(6. \)

(1—=7)VeV(x?%) =) =%(x.alx") Vglogpu(alx;#) Q°(x.a)

x.a

(1 — )Vl (x%) = Z“ .alx%) Vg log pu(alx; 8) Wo(x. a)

+2y ) 7(x.alx%) P(x'|x. a) r(x.a) Vo V*(X)

x.ax’

75(x.alx%) and 74(x.alx®) are v and ~* discounted visiting state
distributions of the Markov chain under policy ¢

A
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Idea: Estimate the gradients V; V?(x°) and v, U? (x°) using two simulated
trajectories of the system corresponding to policies with parameters ¢ and
6T =60+3A. 3>0.

Our actor-critic algorithms are based on two SP methods

@ Simultaneous Perturbation Stochastic Approximation (SPSA)

@ Smoothed Functional (SF)

Fal
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Computing the Gradient V,L(6. \)

(1 =7)VeV?(x%) =) #5(x. alx") Vylogpu(alx; #) @°(x. a)

Xx.a

(1 — ")Vl (x%) = ZJ. x. alx°) Vglog u(alx; 8) W8(x. a)

+2y ) 7(x.alx%) P(x'|x, a) r(x,a) Vo V*(x)

x.ax’

w5(x.alx®) and 7%(x.alx°) are v and »* discounted visiting state
distributions of the Markov chain under policy #

Fal
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Idea: Estimate the gradients V; V#(x°) and V,U?(x°) using two simulated
trajectories of the system corresponding to policies with parameters ¢ and
0 =60+ 38A, 3>0.

Our actor-critic algorithms are based on two SP methods

@ Simuitaneous Perturbation Stochastic Approximation (SPSA)

@ Smoothed Functional (SF)

Fal



SPSA Gradient Estimate

V9+ﬂA(XO) » VG(XO)

33{;} Vﬂ (X U) = A

A Is a vector of independent Rademacher random variables

SF Gradient Estimate
By VO(x°) =~ %m(vwﬁ(x*’)-’vﬂ(xﬂ)), i=1,... 5

A is a vector of independent Gaussian V(0. 1) random variables



l rp' Critic Actor

s+ o] ~ (a7 00 ) ot 6 o update 6, 9
t+1

using (8) ———»

I't -
(g N#{'iftlﬂt) —— Of. 5. Up, Up b or (9)

Critic

Trajectory 1 take action a; ~ p(-|x;: 6;). observe reward r(x;, a;) and next state x4
Trajectory 2 take action & ~ u(-|x;"; 07 ). observe reward r(x;. a ) and next state x;_,

Critic update the critic parameters v, v; for value and w. u;” for square vaiue
functions in a TD-like fashion

Actor estimate VV#(x?) and VU?(x%) using SPSA or SF and update the policy
parameter # and the Lagrange multiplier A




Critic Updates (Tamar et al., 2013)
Vie1 = Vt+§3(r)§t¢v(ﬁﬁ) V:i_-t = V;F +g3(t)a}“¢y(xﬁ)
Urer = U + G(T)erou(X) Ufry = U + G(Hef du(XF)

where the TD-errors 4, d;", ;. €; are compuied as

0t = (X, @) + Vi Su(Xer1) — Ve Sv(Xe)
& =r(X".a5 )+ oul(Xiy) — i ou(X)

et = I(Xe, @) +2vr(Xe, @)y dv(Xes1) +7°Uf du(Xest) — Uf Du(Xe)
& =g, 3?)2 +29r(x; . & vy TG?"V(XL) i 72%+T¢u(x::-1) —uf T¢ﬂ(xt+)

Fal
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x“))
)" ou(
Ae(uf —
X))y — ) o(x%) —

v

: (1+2\y"

5 [9“ (

pal

x“))z = a)]
1) 6ulx®) — (" 6
Ats1 =T {/\r + i
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Actor Updates

o, _r,[a‘"+ 20 (1 + 2007 0u) (5 — )T 60() — Ml — )T 0%

Ay =Ty {/\t + () ( ¢ ou(x?) — (v, rTé»‘v(xu))z —ﬂ)]

step-sizes {(a(1)}. {¢2(t)}. and {(i(t)} are chosen such that the critic. policy
parameter, and Lagrange multiplier updates are on the fastest, intermediate,
and slowest time-scales, respectively.

A



Critic Updates (Tamar et al., 2013)
Visr = Ve + Ga(1)dede(Xe) Vi =V + Ga(1)0F ov(x7)
Upsy = U + Ga(F)erdu(X) Uiy = Ui + Ga(Def du()

where the TD-errors 4, d;". ¢;. €] are compuied as

0t = M(Xe. @) + Ve Ou(Xer1) — V¢ du(Xe)
& =r0G.a) +7v  ou(xi) — v ov()
et = (X, &) + 29r(Xe, @)y dv(Xer1) + 72U dulXer1) — U du(Xe)

2 5 ey = -
e =r(x.a )" +2yr(x . a v ¢V(x:x-1) +yu %(X:H) — Uy du(Xy)

A



aﬂ,_r,-[a}“ Call) ((1+2,x v ov(x9)(v; — v) T dw(x®) — AU — ) ¢u(x°))

Atr1 = [At + G () (] 0ulx®) — (7 on(x")” - a)]

A



Actor Updates
8, —r; [of’ + ;i{?) ((1 + 200" on (X)) (v — ve) T u(x®) — Aol — u,)%.,(x“))

Aty = [}lr +G(0) (o 2ux®) — (' 61 (x%)* - a)]

step-sizes {(a(1)}. {¢2(t)}. and {¢i(t)} are chosen such that the critic. policy
parameter, and Lagrange multiplier updates are on the fastest, intermediate,
and slowest time-scales, respectively.

A



Actor Updates

o2y = 0360 + 205 (1 2007 )7 ) ow(0) — Ml — ) eu())
ey

Atry =T {'\t +Gi(2) (U;réu(xﬂ) — (v ow(x®))” — a)]

step-sizes {((1)}. {¢2(1)}. and {(:(t)} are chosen such that the critic. policy
parameter, and Lagrange multiplier updates are on the fastest, intermediate,
and slowest time-scales, respectively.

three time-scale stochastic approximation algorithm
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Average Reward Setting

A



Average Reward

plp) = lim IE[Z Rmu] = Y 7*(x.a)r(x.a)

Long-Run Variance (measure of variability)

-
M) = Y 7 (x. &)[r(x. @)—p(u)]* = fim —E[Z Re— pln))’ }
t=0

x.a

The frequency of visiting state-action pairs. =" (x. a), determines the
variability in the average reward.

bnzia
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Average Reward

plr) = ]JLTE]E[ZRH#‘ = Zr“(x.a)r(x.a)

Long-Run Variance (measure of variability)

T—1
= ¥ w(x.a)[r(x.a) — p(u)]* = 'ﬂglrE [Z (Re— o))" | #]

=0

= n(p) — p)?. where n(x) = ) 7*(x.a)r(x.a)

&!



max p(u) st
T

Ig

max rngin L(B.X) = —p(0) + A(A(B) — )

Au) < a

One needs to evaluate VyL(#.\) and V,\L(#. \) to tune # and A

A
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Computing the Gradient V,L(6. A)

Vp(0) = w(x.a0)V log u(alx; 0)Q(x. a 0)

Vn(0) =Y w(x. & 0)V log u(alx; 0) W(x. & 0)

x.a

U* and W* are the differential value and action-value functions associated
with the square reward, satisfying the following Poisson equations:

n) + U() = Y u(alx) | r(x. a2 + ¥ P(X|x. a)U(x')

n(p) + WH(x.a) = r(x.a)* + Z P(x'|x.a)U*(x")

Fa)



Input: policy u(-|-; #) and value function feature vectors oy (-) and oy(-)
Initialization: policy parameters ¢ = #y: value function weight vectors v = v and
u = Ug: initial state xp ~ Pp(x)
fort=0.1.2,...do

Draw action a; ~ u(-|x¢; 8;) and observe reward R(x;. a;) and next state x4

Average Updates: ¢ = (1 — (a(1))pr + Ga{t)R(x:. ar)
et = (1= (1) 7 + G R(Xe. &)
TD Errors: 6 = R(Xt. at) — prat + V¢ v(Xes1) — ¥ ov(Xe)
€0 = R(X¢. @) — ey + Y Ou(Xeet) — U Sul(Xe)
Critic Update: v,y = vi + (3(f)0rov(X). Upey = Up + Ca(t)erdu(Xi)
Actor Update: 01 = (8 — Go(t) ( — druir + Aelervie — 2hes1drin))

Aty =T («\r + G () Fees — PPy —'-1))

end for
return policy and value function parameters #. \.v. u

N
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Input: policy y(-|-; #) and value function feature vectors oy(-) and oy(-)
Initialization: policy parameters # = #y: value function weight vectors v = vy and
u = Uy initial state xg ~ Py(x)
orr—0.12....90

Draw action a; ~ p(-|xs; #¢) and observe reward R(x;, a;) and next state x;.4

Average Updates: [y = (1 — all))pr + Ca(0)R(x. &)
et = (1 = Cal()) 7 + Ca()R(xe. ar)?
TD Errors: &; = R(X. at) — pret + V¢ Ovl(Xew1) — V¢ dv(Xe)

et = R(Xe. ar)® — fleet + Uy Ou(Xeer) — U 0u(X)
Critic Update: vi.1 = v¢ — (Ga{f)drov(x). U1 = Ut + Cal terou(Xt)

Actor Update: #; 4 = r(et — () (= dprp + Aileris — 25r+15tvr)))

Ater = o (A + G (0 — Py — )

end for
return policy and value function parameters . A. v. u

lrnzia three time-scale stochastic approximation algorithm E




Problem Description
State: vector of queue lengths and elapsed times

Action: feasible sign configurations
Cost:
hixe) =r = [Y 2+ qi(t) + D s+ G(O)] +51% [ D+ 4(H) + ) _ sp= ti(1)]

ich i€l icip igly

Aim: find a risk-sensitive control strategy that minimizes the

total delay experienced by road users, while also
reducing the variations

Fal



Experimental Results
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Problem Description
State: vector of queue lengths and elapsed times

Action: feasible sign configurations
Cost:
hie) =ty = [y r*qi(t) +Y_sa=q(t)] + 1% [Y_r+t(t)+ ) sp=4(1)]

il igh i€k il

Aim: find a risk-sensitive control strategy that minimizes the

total delay experienced by road users, while also
reducing the variations

0
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(b) Average junction waiting time

RS-AC vs. Risk-Nutral AC: higher return with lower variance
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For discounted and average reward MDPs, we
@ define a set of (variance-related) risk-sensitive criteria
@ show how to estimate the gradient of these risk-sensitive criteria
@ propose actor-critic algorithms to optimize these risk-sensitive criteria
@ establish the asymptotic convergence of the algorithms

@ demonstrate their usefulness in a traffic signal control problem

N



For discounted and average reward MDPs,
@ study other (more sophisticated) risk-sensitive criteria

@ develop algorithms to (approximately) optimize these
risk-sensitive criteria

@ obtain finite-time bounds on the quality of solution of actor-critic
(risk-neutral and risk-sensitive) algorithms

A
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