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From Bandits to Experts
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Nonstochastic sequential decision-making

Player repeateadly chooses actions from a set of K available actions
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PFort—1272 ...

@ Loss {:(a) is assigned to everyactiona =1,...,K
(hidden from the player)
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Nonstochastic sequential decision-making

Player repeateadly chooses actions from a set of K available actions
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@ Loss li(a) is assigned to everyactiona =1,...,K
(hidden from the player)

© Player picks an action X; (possibly using randomization) and
incurs loss £ (X4 )
@ Player gets feedback information
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Nonstochastic sequential decision-making

Player repeateadly chooses actions from a set of K available actions
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@ Loss {:(a) is assigned to every actiona =1,...,K
(hidden from the player)

© Player picks an action X; (possibly using randomization) and
incurs loss ¢ ( X+ )

@ Player gets feedback information

e Bandit observation: Only {,(X;) is revealed
e Expert observation: {;(a) foreach a =1,...,K is revealed
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Nonstochastic sequential decision-making

Player repeateadly chooses actions from a set of K available actions

@ ®@ @ ® O © @ ® ©

@ Loss {i(a) is assigned to everyactiona =1,...,K
(hidden from the player)

@ Player picks an action X; (possibly using randomization) and
incurs loss £ (X¢)

@ Player gets feedback information

e Bandit observation: Only {,(X;} is revealed
e Expert observation: {;(a) foreacha =1,...,K is revealed

Goal: Player’s total loss must be close to that of the single best action
(no stochastic assumptions on losses)

From Bandits to Experts



Measuring player’s performance

Regret (as a function of number T of plays)

] | g |
Rr=E|) (X —  min_) {(a)
a—1__K
- L — J _ =1 .
Total loss of player Total loss of single best action
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Measuring player’s performance

Regret (as a function of number T of plays)

T E ]
Rr=E|) f(Xe) —  min_) {l(a)
S
- t=1 J N  —
Total loss of playver Total loss of single best action

Known results

e Hedge for experts: Rr < VTInK

@ Exp3 for bandits: Rt < VTKInK
These bounds are tight (only In K in the bandit bound is unnecessary)

=y 'w
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Relationships between actions

Undirected Directed

From Bandits to Experts



Undirected observation graph

From Bandits to Experts



Recovering expert and bandit settings

Experts: clique Bandits: edgeless graph




Independence number x(G)

The size of the largest independent set
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ELP algorithm

e Tightregretbound: Ry < /Ta(G)InK x(G) < K
@ Experts (G =dlique): «(G) =1

@ Bandits (G =edgeless graph): «{G) =K

@ ELP must solve a linear program at each step

@ Result holds also when G changes over time: Gy, Ga,..., Gt

RT = \/Zt C(G-t}lIIK

From Bandits to Experts



Independence number x(G)

The size of the largest independent set




ELP algorithm

@ Tightregretbound: Ry < /Ta(G)InK x(G) <K
@ Experts (G =dique): «f(G) =1

@ Bandits (G = edgeless graph): «{G)=K

@ ELP must solve a linear program at each step

@ Result holds also when G changes over time: Gy, Ga,..., Gt

Rt < \/Zt alGt) InK

From Bandits to Experts



Exp3-SET for undirected observation graphs

@ Same regret bound as ELP
@ No need of solving linear programs

@ No need of knowing G+ before predicting!

From Bandits to Experts



Exp3-SET for undirected observation graphs

@ Same regret bound as ELP
@ No need of solving linear programs

@ No need of knowing G before predicting!

Exp3-DOM for directed observation graphs

@ Harder than the undirected case (less feedback for the player)
@ Yet, regret worse than the undirected case only by log factors

@ However, G: must be known before predicting

From Bandits to Experts



Exp3-SET for undirected observation graphs

Player’s strategy

t—1
P(X¢ =a) o exp (—nz}i(a)) a—=1. K

=—3
lt(a) D
Tia - ' | X - bserved
where te(a) = { P(l(a)is observed) t(a) is observe
0 otherwise

Note: no exploration needed

From Bandits to Experts



Analysis

-
Z Z P(X: =a | l:(a)is observed) < v"rT{x['G}ln](

=1

RTQ -l—

(S =
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Analysis

InK
13

3
+ g Z Z P(X: =a | €:(a)is observed) < \,-";TL\’JG'?}_I‘[K

t—=1 a

Rt

A\

Key lemma: Z P(X: =a|l(a)is Dbsen-red;) < x(G)

Check special cases:

1 bandits
P(X: =a| ¢(a) is observed) =
P(X; =a) experts

From Bandits to Experts



Directed observation graph

From Bandits to Experis



Issues with directed observation graphs

Yrientati F edees reduces feedback — t will increase
Orientation Dteige reduces feedback regret v ill increase

) P(X; =a|t(a) is observed) can be large even when «(G) is small

a
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Issues with directed observation graphs

Orientation of edges reduces feedback — regret will increase

Z P(X: = a | {¢(a) is observed) can be large even when «(G) is small

a

G = total order on K actions

x(G) =1 |

ignoring orientation |

There exists a distribution P(X: =a) a=1,...,K such that

K+1
Z}P(X’E — a | {¢(a) is observed) = %

N. Cesa-Bianchi (UNIMI) From Bandits to Experts



Domination number

The size of the smallest dominating set

From Bandits to Experts



Exp3-DOM for directed observation graphs

@ P(X; =a|l:(a) is observed) is controlled by mixing Exp3-SET
with the uniform distribution over a dominating set of G

@ Greedy approximation of dominating set is OK

From Bandits to Experts



Exp3-DOM for directed observation graphs

@ P(X; = a| l:(a) is observed) is controlled by mixing Exp3-SET
with the uniform distribution over a dominating set of G

@ Greedy approximation of dominating set is OK

Key lemma for directed observation graphs

ZIP X: = a| l:(a) is observed) = O(«(G) In(KT))

Proof uses Turan’s Theorem relating the independence number of a
graph to its density

This gives regret Ry = O({an) VTx(G) In[KT)) T

From Bandits to Experts



Conclusions

In the undirected case G; can be revealed after predicting

Lack of feedback caused by edge orientation costs only log factors
in the regret

Weaker result for directed case when G is only revealed after
predicting. Is this inevitable?

ST

& Ti'?':‘b\_
- s F=al

From Bandits to Experts
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Eluder Dimension and the Sample Complexity of
Optimistic Exploration

Daniel Russo
Joint Work with Prof. Benjamin Van Roy

Stanford University

NIPS 2013

Dan Russo (Stanford University) NIPS 2013 1/19



Online Shortest Path Problem with Bandit Feedback

Repeatedly route packets from V1 to V12.
Unknown 6; ; specifies the mean time to travel between Vi and Vj.

)
5

@ Observe the total routing time of each packet.

@ Goal: Minimize the cumulative routing time of many packets.
)

An example of a “linear bandit” problem.

NIPS 2013 2/19




Linear Bandit Problems

@ Action space: A

e Feature map: ¢ : A — R¢

@ Mean reward of action a € A is ¢(a)"#
e 6 € © C RY is unknown.

@ Goal: Learn to solve max.c4 &(a)’ 8

3/19



Convergence to Optimality

@ The agent can learn without exploring every possible action.

The work of Dani et al. (2008), Rusmevichientong and Tsitsiklis (2010),
and Abbasi-Yadkori et al. (2011) yields tight regret bounds of order

dvV'T

@ Bounds exhibit no dependence on the number of actions

Dan Russo (Stanford University) NIPS 2013 4/ 19



Convergence to Optimality

@ The agent can learn without exploring every possible action.

The work of Dani et al. (2008), Rusmevichientong and Tsitsiklis (2010),
and Abbasi-Yadkori et al. (2011) yields tight regret bounds of order

dvV'T

@ Bounds exhibit no dependence on the number of actions

@ What about more general model classes?

Dan Russo (Stanford University) NiPS 2013 4 /19



A General Multiarmed Bandit

@ We want to solve

f
)

@ Know fy € F = {f,: pc ©}
@ Beliefs about # € © may be encoded in terms of prior distribution.

@ Agent sequentially chooses actions A;., As. ...

@ Choosing action A; yields random reward with mean f(A;).

NIPS 2013 5/19



A General Multiarmed Bandit

@ Evaluate the performance up to time T by regret:

-
Regret(T) = Z fo(A”) —  fo(Ar)
—1 S— S—
| optimal action selected action

Dan Russo (Stanford University) NiPS 2013 6/ 19



Theoretical Guarantees

Provide upper bounds on expected regret of order

' dimg (]—_. T_z) log (N (]: T =L )) y

g -

g

h -
-
\ Eluder dimension log—covering number

Dan Russo (Stanford University)

NIPS 2013

/19



Theoretical Guarantees

Provide upper bounds on expected regret of order

 dimg (]-—. T_E) log (N (-.7-_. TS )) [

o N -

T

.-
-
\ Eluder dimension log—covering number

@ Log—covering number:

e Sensitivity to statistical over-fitting.
e Closely related to concepts from statistical learning theory.

Dan Russo (Stanford University) NiPS 2013
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Theoretical Guarantees

Provide upper bounds on expected regret of order

?dimg (]:. T_z) log (N (]- ( Hx) ) T.

e . -
T

h
-
\ Eluder dimension log—covering number

@ Log—covering number:

e Sensitivity to statistical over-fitting.
e (losely related to concepts from statistical learning theory.

@ Eluder dimension:

e How does sampling one action reduce uncertainty about others?
@ A new notion we introduce.

Dan Russo (Stanford University) NiPS 2013 7/19



Theoretical Guarantees

Provide upper bounds on expected regret of order

‘dimg (]: T_E) log (N (]: ||x))

AN I’

.

'y e
\ Eluder dimension log—covering number

@ Bound holds for Thompson Sampling and a general UCE algorithm.

@ Matches the best bounds available for UCB algorithms when
specialized to linear or generalized linear models.

Dan Russo (Stanford University NIPS 2013 8/ 19



What about VC Dimension?

Fix problem:
wA=—"{a .. 2)
o F =LAk, ..}
o fi(a) = 1(ou

Dan Russo (Stanford University)
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What about VC Dimension?

Fix problem: ] I
o A—"{a5 .5 4
o F={f, £} :
o fi(a) = (s

I I ] 1 i I I 1 [ 1
at 311 aH 331 a4t 351 a6l aft 381

ACTion

A noiseless prediction problem: Suppose A; drawn uniformly from A,
@ Dimyc(F) =1
@ Always predicting f(A;) = 0 already yields error rate of 1/n.

Dan Russo (Stanford University) NIPS 2013 g /19



What about VC Dimension?

Fix problem:
o A={a,...,an}
eF=_ L]
o fi(a) = 1{s—sy

Funetion Vilue

MR — —___—_}
I T T ] T T T [} 1 T 1

a3t anl an a3 a1 a; akl afn a#1 3@

Action

A multiarmed bandit problem: Suppose fz drawn uniformly from F.

then until the optimal action is identified,
© Regret per round is 1
@ At most a single function is ruled out per round

@ Regret scales linearly with n.

Dan Russo (Stanford University) NIPS 2013
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Defining Eluder Dimension

Better to hide my
true position...

What he
said is new!

@ A politician sequentially presents information to reporters.
@ But each piece of information must be new.
@ How long can he continue?

NiPs 2013 11/ 19



Defining Eluder Dimension

An action a is independent of {a;. .... a,} if two functions that make
similar predictions at {a;..... a,} could differ significantly at a.

- Rdl
m 2
o
=
>
=
S
: 4]
&
e -
I | | | I

al a2 a a1 a5 a6 alf a8 a9 all
Action

Dan Russo (Stanford University) NIES 2013 12 /19



Defining Eluder Dimension

Definition

a € A is e-independent of {a;. ....a,} C A with respect to F if
e there exist f, f € F satisfying
Q@ /X1 (fla) - F(a)2 <
@ f(a) —f(a)>e

-f"l ——
m 2
=
£
S
E —
il
——
—_
]
ald a3 all
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Defining Eluder Dimension

The eluder dimension is the length of the longest independent sequence.

Definition
dimg(F.¢€) is the length of the longest sequence of elements in A such
that, for some € > €, every element is €’-independent of its predecessors.

Dan Russo (Stanford University) NIPS 2013 i4 /19




‘ Optimism in the face of uncertainty

Act according to an “optimistic” model of the environment

© JF: < subset of f € F that are statistically plausible given data.

@ Play A; € arg max{ sup f(a)}.
acA feF:

S fla) — — s flaz)

S fa{as)

gldy ) =i

);fg}.frf (@) —
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Optimism in the face of uncertainty

Act according to an “optimistic” model of the environment

© J;: + subset of f € F that are statistically plausible given data.

@ Play A; € argmax{ supf(a) ;.
ac A feFe

There is a huge literature on this approach:

@ Bandit problems with independent arms
@ (Lai—Robins, 1985), (Lai, 1987), (Auer, 2002), (Audibert, 2009)...

e Bandit problems with dependent arms
@ (Rusmevichientong-Tsitsiklis 2010), (Filippi et. al, 2010), (Srinivas et. al, 2012)...

@ Reinforcement Learning
@ (Kearns—Singh, 2002), (Bartlett—Terwari, 2009), (Jaksch et. al 2010)...

@ Monte Carlo Tree Search
@ (Kocsis—Szepesvari, 2006)...

Dan Russo (Stanford University NIPS 2013 16 /19




A posterior sampling strategy

“Thompson sampling” & “probability matching™:

@ Sample each action according to the posterior probability it is optimal.

@ Generated a lot of recent interest.

Our paper Learning to Optimize via Posterior Sampling

e establishes a close connection with optimistic algorithms.

@ implies our analysis also bounds the Bayesian regret of TS.

Dan Russo (Stanford University) NIPS 2013 17 / 19



Proof sketch

dimg (]—" T_z) log (N (.F Il I“lf.)) T

o "

. .
\ Eluder dimension log—covering number

@ Build generic confidence sets F; C F
e Size of F; depends on the log—covering number of F.
@ Measure the rate at which confidence intervals shrink.
e Depends on the eluder dimension of F.

Dan Russo (Stanford University)

NiIPS 2013

18/ 19



Conclusion

@ MABs require fundamentally different notions of model complexity.
@ Huge value in having a unified conceptual understanding.

@ Much more work is needed

This work:
@ A step toward this goal.

Dan Russo (Stanford University) NIPS 2013 19 / 19
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In Stock Market, with Whom do you Trade?

0 Generally, there's an order book

— . i . & o= y S -
0 Order book specities at any time

now many shares are up tor bid - I

)

0 Traders can interact with order l l

: : . .
DOOK via market and imit oraers .

Bitcoin/USD order book on 12/6/2013 (MTGOX.com)
Selling

Ask Size

912.99 13.8939
911 . 99614 @.8373
711.99995 19.2
Jl4.9 L AETE
914.74993 2.836

e 5. 5417

742.9 ¥

914, 38009 L -F.
917.9% 8.8
8.9 r 3

918.41992 @.85%4
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Market Makers = Liquidity Providers

Market makers provide liquidity to -

financial markets: _

* Quote both buy and sell prices .I

* Profit from bid-ask spread, i.e. l l o s
difference in buy and sell prices . I

« Counterparty for transactions i

Bitcoin/USD order book on 12/6/2013 (IMTGOX.com)
Selling

Bid Ask Size

83.76573 912.99 11.893%
902.0 F13.99614 8.837%
991.5%8181 911.99999 18.2
881.21 314,98 49 . 455
1.2 914, 74993 2.836
- O

d  AATD

E1.41 915.8 i 1
.0 ¥156. 58089 8.826
0. 00 917.9 9.9

a. 0 1.9 ]
894. 58173 918.41992 @. 254

-




Market Makers = Liquidity Providers

Market makers provide liquidity to

financial markets:

* Quote both buy and sell prices

 Profit from bid-ask spread, i.e.
difference in buy and sell prices

» Counterparty for transactions

e
91399999

91474993
iA. 2

916. 58309
917.%

918.41992




THIS TALK:
Designing Adaptive Market Makers

0 We present and analyze “Spread-based Market Making”

0 We ask, how can we set the critical parameter, the bid-
ask spread, adaptively?

0 We apply an experts (online learning) strategy. Problem:
How to manage inventory switching costs?

0 Theoretical results: switching costs are “not too bad”

0 Empirical results: often our adaptive market maker does
better than the best bid-ask spread.




Online Market Making

Attimet=1,2, ..., T
» Market maker places buy/sell orders
» Market maker observes price p, (may be adversarially generated

= Market maker executes applicable orders




Spread-based strategies

Spread size parameter b
Window [a,, a, + b]




Spread-based strategies

Spread size parameter b
Window [a,, a, + b]

B .
b l price
a a,+b
o}

Current price p, in window:
no transactions, no change in window




Spread-based strategies

Spread size parameter b
Window [a,, a, + b]

B 5]
price
a a,+D




Spread-based strategies

Spread size parameter b
Window [a,, a, + b]

b )
a a,+b
P
Pe < 3
Window moved so that a,., = p,

Buy a,— p, shares




Spread-based strategies

Spread size parameter b

Window [a,, a, + b]

0 )
L
31 = P
P < 3
Window moved so that a,.; = p,

Buy a,— p, shares




Spread-based strategies

Spread size parameter b

Window [a,, a, + b]

B "
price
3 a, + b |




Spread-based strategies

Spread size parameter b
Window [a,, a, + b]

b -
price

Ches +b:p‘.

p,>a.,+b
Window moved so that a,., + b = p,
Sell p, - (a, + b) shares




Spread-Based Market
Making

0 Upside: Spread b implies buy and sell orders are matched
to y:eld a profit of b

0 i.e. shares that are bought at some price are immediately
offered for sale at a price b units higher

side: price fluctuations within window yield no profit




Spread-Based Market
Making

0 Upside: Spread b implies buy and sell orders are matched
to yleld a profit of b

0 i.e. shares that are bought at some price are immediately
offered for sale at a price b units higher

0 Downside: price fluctuations within window yield no profit

0 Theorem: spread b strategy payoff is at least
— b ;
Y Slacss — ail — (larsy — a1] +b)?

=1




Adaptive Spread Selection

0 How to adaptively choose the spread for market making?




Adaptive Spread Selection

0 How to adaptively choose the spread for market making?

0 given a set B of different spread sizes, is it possible to adaptively
choose spread to compete with the best spread in hindsight?

0 Regret = payoff(best strategy using spread in B) - payoff{algorithm)




Adaptive Spread Selection

0 How to adaptively choose the spread for market making?

0 given a set B of different spread sizes, is it possible to adaptively
choose spread to compete with the best spread in hindsight?

0 Regret = payoff(best strategy using spread in B) - payoff(algorithm)

0 Challenge: different states, positions in stock held by different
spread-based strategies can be different

0 Typical online expert learning algorithms assume no state




Adaptive Spread Selection

0 How to adaptively choose the spread for market making?

0 given a set B of different spread sizes, is it possible to adaptively
choose spread to compete with the best spread in hindsight?

0 Regret = payoff(best strategy using spread in B) - payoff(algorithm)

0 Challenge: different states, positions in stock held by different
spread-based strategies can be different

0 Typical online expert learning algorithms assume no state

0 Main Theorem: adaptive algorithm with O(/T) regret after T
steps




How to Handle State

for two spreads b < b’, if initially the window
for b is nested in that for b’, then it remains nested.

R




How to Handle State

for any strategy (stock position) + a, is invariant over t.




How to Handle State

a: for any strategy (stock position) + a, is invariant over t.

Before After Afstock) Afa,)
| | |
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How to Handle State

for two spreads b < b’, if initially the window
for b is nested in that for b’, then it remains nested.

for any strategy (stock position) + a, is invariant over t. |




How to Handle State

for two spreads b < b’, if initially the window
*’Dr b is nested in that for b’, then it remains nested.

i for any strategy (stock position) + a, is invariant over t. |

; . a . ) ]
- difference in state between strategies is bounded!




How to Handle State

for b

g le 2. for two Spreads b < b’, if initially the window
IS nested in that for b’, then it remains nested.

2 for any strategy (stock position) + a, is invariant over t. I

hot: difference in state between strategies is bounded! |

Run an experts algorithm (eg. MW, FPL) over strategies
For any t:
= if strategy chosen at t is not the one from t-1,

then buy/sell stock to match the new state
= use same buy/sell orders as newly chosen strategy




Regret Minimizing Algorithm

* Run an experts algorithm (eg. MW, FPL) over strategies |
» Foranyt:
= if strategy chosen at t is not the one from t-1,
then buy/sell stock to match the new state
= use same buy/sell orders as newly chosen strategy

N




Regret Minimizing Algorithm

* Run an experts algorithm (eg. MW, FPL) over strategies
« Foranyt:
= if strategy chosen at t is not the one from t-1,
then buy/sell stock to match the new state
= use same buy/sell orders as newly chosen strategy

Regret thec : bounded cost of state change implies |
(regret of algonthm (regret of experts alg) + (number of expert changes)




Regret Minimizing Algorithm

* Run an experts algorithm (eg. MW, FPL) over strategies
« Foranyt:
= if strategy chosen at t is not the one from t-1,
then buy/sell stock to match the new state
= use same buy/sell orders as newly chosen strategy

alaldbdalas

}

Regret thec : bounded cost of state change implies |
(regret of algonthm} (regret of experts alg) + (number of expert changes) |

For either MW or FPL, regret and number of expert changes both O(T)
Hence, regret of algorithm using MW or FPL is O/T)




Experiments

0 Stock price data for MSFT, HPQ, and WMT downloaded from
www.netfonds.no

0 For 5 days from May 6-10, 2013

0 7,000 - 38,000 trades
0 Price quotes rounded to nearest cent

0 Spread params (in cents) B = {1, 2, 3, 4, 5, 10, 20, 40, 80, 100}

0 Implemented algorithm with MW, FPL; compared to simple
uniform averaging, simple FTL, and best in hindsight




Results

Symbol | Date | T Best | MW FPL FTL | Unif.
HPQ  5/7/13 13194 558 620 -42 19 101
HPQ  5/8/13 12016 186 340 -568 -242 -720
HPQ  5/9/13 14804 1058 891 327 214 591

MSFT  5/7/13 34017 1260 1157 1048 1247 64
MSFT  5/8/13 38664 2074 2064 1669 2074 939
MSFT  5/9/13 34386 1813 1803 1534 1811 656
WMT  5/7/13 11309 1333 580 995 918 935
WMT  5/8/13 12966 1372 1300 833 974 926

WMT  5/9/13 10431 2415 2330 1883 1991 1654

ed = best performance
d italics = beats best in hindsight

A A




Experiments

0 Stock price data for MSFT, HPQ, and WMT downloaded from
www.netfonds.no

0 For 5 days from May 6-10, 2013

0 7,000 - 38,000 trades
0 Price quotes rounded to nearest cent

0 Spread params (in cents) B = {1, 2, 3, 4, 5, 10, 20, 40, 80, 100}

0 Implemented algorithm with MW, FPL; compared to simple
uniform averaging, simple FTL, and best in hindsight




Results

Symbol|  Date T Best | MW FPL FTL|  Unif.
HPQ 5/7/13 13194 558 620 -42 19 101
HPQ  5/8/13 12016 186 -568 242 -720
HPQ 5/9/13 14804 1058 891 327 214 591

MSFT  5/7/13 34017 1260 1157 1048 1247 64
MSFT  5/8/13 38664 2074 2064 1649 2074 939
MSFT  5/9/13 34386 1813 1803 1534 1811 656
WMT  5/7/13 11309 1333 580 995 918 535
WMT  5/8/13 12966 1372 1300 833 974 926

WMT  5/9/13 10431 2415 2330 1883 1991 1654

ed = best performance
od italics = beats best in hindsight

A A




Thank youl!

Come by our poster: Sat11
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Outline

© Introduction to Submodular Functions
€© Problem Formulation of SCSC/ SCSK

© Algorithmic Framework

© Empirical Results
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Set functions f : 2Y = R

o V is a finite “ground” set of objects.

o A set function f : 2¥ — R produces a value for any
subset AC V.

lyer & Bilmes, 2013 (UW, Seattle) SCSC/50CSK NIPS-2013

.
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Submodular Functions

T

Set functions f : 2Y = R
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Submodular Funcrions

Submodular Set Functions

@ Special class of set functions.

F(AU V) — f(A) > f(BUv) —f(B). if ACB (1)
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Submodular Fanctions

Submodular Set Functions

@ Special class of set functions.
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Submodular Funcrions

Submodular Set Functions

@ Special class of set functions.

F(AU V) — f(A) > f(BUv)—f(B). if ACB (1)

f.
o%%

Gain = 0
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Submodular Functions

Submodular Set Functions

@ Special class of set functions.

F(AU V) — f(A) > f(BUv) —f(B), if ACB (1)
y
PR

o/ \geb

Gain=1 Gain = 0

@ Monotonicity: f(A) < f(B). if ACB.

lver & Bilmes, 2013 (UW, Seattle) SCSC/5CK NiPs-2013 3/20



Submodular Fencons

Two Sides of Submodularity
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Submodular Foncrions

Two Sides of Submodularity

@ Solve min{f(X)|X C V}.
@ Polynomial-time.
@ Relation to convexity.

@ Models cooperation.

Fa§)—F() > (g ) —fig)

e

lyer & Bilmes, 2013 (UW, Seattle) SCSC/5CK
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Submodular Functions

Two Sides of Submodularity

@ Solve min{f(X)|X C
@ Polynomial-time.

@ Relation to convexity.
5

Models cooperation.

wo o

F(

v}

) —F(H) > Fig ) —F( g)

lver & Bilmes, 2013 (UW, Seattle)

@ Solve max{g(X)|X C V}.
@ Constant-factor approximable.

@ Relation to concavity.

@ Models diversity and coverage.

bl ..

SCSC/50SK
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Submodular Funcrions

Two Sides of Submodularity

Solve min{f(X)}|X C V}. @ Solve max{g(X}|X C V}.

°
@ Polynomial-time. @ Constant-factor approximable.
@ Relation to convexity. @ Relation to concavity.
@ Models cooperation. @ Models diversity and coverage.
(W s)—f(W) =g )—Fflig) ®° ° “

@ Sometimes we want to simultaneously maximize coverage/ diversity
(g) while minimizing cooperative costs (f).
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Submodular Funcrions

Two Sides of Submodularity

Solve min{f(X)|X C V}. @ Solve max{g(X)|X C V}.

o
@ Polynomial-time. @ Constant-factor approximable.
@ Relation to convexity. @ Relation to concavity.
@ Models cooperation. @ Models diversity and coverage.
CHEGCIEUC (=S %° >

@ Sometimes we want to simultaneously maximize coverage/ diversity
(g) while minimizing cooperative costs (f).

@ Often these naturally occur as budget or cover constraints (for

example, maximize diversity subject to a budget constraint on the
submodular cost).

iver & Bilmes, 2013 (UW, Seattle) SCSC/SCSK NIPS-2013 -

/20



Problem Formulaton

Submodular Optimization with Submodular Constraints

@ Historically: DS optimization

fin, (K] —2gtX)
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Problem Formuilation

Submodular Optimization with Submodular Constraints

@ Historically: DS optimization

Co-operative Costs  Coverage/ Diversity

n F(X) — Ag(X)

>
Il"l3
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Problem Formuilation

Submodular Optimization with Submodular Constraints

@ Historically: DS optimization

Co-operative Costs  Coverage/ Diversity

F(X) — Ag(X)

@ Unfortunately, NP hard to approximate (lyer-Bilmes'12).
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Problem Formulation

Submodular Optimization with Submodular Constraints

@ Historically: DS optimization

Co-operative Costs  Coverage/ Diversity

in F(X) — Ag(X)

x
I("WEi

@ Unfortunately, NP hard to approximate (lyer-Bilmes'12).

@ We introduce the following, which is often more natual anyway:
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Problem Formulaton

Submodular Optimization with Submodular Constraints

@ Historically: DS optimization

Co-operative Costs  Coverage/ Diversity

I fF(X) — Ag(X)

@ Unfortunately, NP hard to approximate (lyer-Bilmes'12).

@ We introduce the following, which is often more natual anyway:

SCSC: min{f(X) : g(X) > c}. SCSK: max{g(X) : f(X) < b},
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Problem Formuiation

Submodular Optimization with Submodular Constraints

@ Historically: DS optimization

Co-operative Costs  Coverage/ Diversity

in £(X) — Ag(X)

>
I("13

@ Unfortunately, NP hard to approximate (lyer-Bilmes'12).

@ We introduce the following, which is often more natual anyway:
Coverage/ Diversity ‘

SCSC: min{f(X) : g(X) > c}. SCSK: r;;;;{mg(X) . F(X) < b),

Co-operative Costs
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Problem Formulation

Submodular Optimization with Submodular Constraints

@ Historically: DS optimization

Co-operative Costs  Coverage/ Diversity

irl} f(X)— Ag(X)

>
Ir‘l3

@ Unfortunately, NP hard to approximate (lyer-Bilmes'12).

@ We introduce the following, which is often more natual anyway:
Coverage/ Diversity |

—

SCSC: min{F(X): g(X) > c}. SCSK: maxlg(X) : F(X) < b}.

— e

Co-operative Costs |

@ While DS optimization is NP hard to approximate, SCSC and SCSK

however, retain approximation guarantees!
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Problem Formulaton

Submodular Optimization with Submodular Constraints

@ Historically: DS optimization

Co-operative Costs  Coverage/ Diversity

F(X) — Ag(X)

@ Unfortunately, NP hard to approximate (lyer-Bilmes'12}.

@ We introduce the following, which is often more natual anyway:
Coverage/ Diversity

SCSC: min{f(X) : g(Xi > c}, SCSK: ma;x{g(){') : F(X) < b}

—— R

|
|
|
Co-operative Costs |

@ While DS optimization is NP hard to approximate, SCSC and SCSK

however, retain approximation guarantees!

@ [hroughout this talk, assume f and g are monotone.

lyer & Bilmes, 2013 (UW, Seattle) SCSC/5CSK NiPS-2013 5/20



Problem Formulation

Our Main Contributions

Coverage/ Diversity

SCSC: min{f(X) : g(X

) > c}, SCSK: m;£{g(X) : f(X) < b},

— -

Co-operative Costs

@ Show how SCSC/SCSK subsume a number of important
optimization problems.

@ Provide a unifying algorithmic framework for these.

@ Provide a complete characterization of the hardness of these
problems.

@ Emphasize the scalability and practicality of some of our algorithms!

lyer & Bilmes, 2013 (UW, Seatile) SCSC/SCK NIPS-2013 6 /20



Problem Formulation

| - Submodular Set Cover and Submodular Knapsack

SSC: min{w(X) : g(X) > c}, SK: max{g(X) : w(X) < b},

lyer & Bilmes, 2013 (UW, Seattie) SCSC/S5CK NIPS-2013 7 /20



Problem Formulation

| - Submodular Set Cover and Submodular Knapsack

Coverage/ Diversity :
eV |
SSC: min{w(X) : g(X) > c}, SK: max{g(X) : w(X) < b}.
Additive Costs
s 12 I: I '-::I ':"-.'— gll_rmght howore Yo downg  —
how are_youl wi th yours  ——— ——
l : _c’;;- my nome 15 lorroire e ore_you
it ;:1:-' 1 ::_::—W —— | ———
=1 S —
) Data Subset Selection S—
Sensor Placement (Wei et al’13)
(Krause et al’08) | Document Summarization
(Lin-Bilmes'11)

lver & Bilmes, 2013 (UW, Seattle) SCSC/S5CK NiPS-2013 /20



Problem Formulation

|l - Submodular Cost with Modular Constraints

SML: min{f(X): w(X) > c}. SS: max{w(X) : f(X) < b},

lyer & Bilmes, 2013 (UW, Seattle) SCSC/5CSK NIPS-2013 8 /20



Problem Formulation

- Submodular Cost with Modular Constraints

Additive functions

=

——

=y B
e — —

e

", mi—

Co-operative Costs

SML: min{f(X): W(X) =gk S5 mag‘{w(X) . f(X) < b}, |

lyer & Bilmes, 2013 (UW, Seattle)

NiPS-2013
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Problem Formulaton

- Submodular Cost with Modular Constraints
Additive functions |
SML: min{f(X) : w(X) > c}, SS: max{w(X) : f(X) < b}, |
Co-operative Costs
‘-:i%bz_ e f—;_?:;: z ﬁj% ——— N

- =& Ez = E “True.” { )

:ﬂ: g ;m % s e, thatstr () true

i) «i_% - “that’s 12" ( ) T

Limited vocabulary speech corpus selection (Lin-Bilmes'11)

lver & Bilmes, 2013 (UW, Seattde) SCSC/5CSK NIPS-2013 8/20



1l - Most General Case: SCSC and SCSK

SCSC: min{f(X) : g(X) > c}, SCSK: max{g(X) : f(X) < b},

lyer & Bilmes, 2013 (UW, Seattle) SCSC/S5CK NIPS-2013 g /20



Problem Formulation

1l - Most General Case: SCSC and SCSK

Coverage/ Diversity

—
——

———

SCSC: min{f(X) : g(X)Z c}, SCSK: rnax:{g(X) - f(X) < b},

i

B

Sensor Placement with

Submodular Costs
(I-Bilmes'12)

iver & Bilmes, 2013 (UW, Seattle)

E R LN
—-— e
ar -
e N PR
-
B
o ]

o T

== e g

Limited vocabulary and
accoustically diverse speech
corpus selection
(Lin-Bilmes'11, Wei et
al’'13)

SCSC/5CSK

e T e e e
- - - T 1

Privacy preserving
communication
(I-Bilmes'13)

NiPS-2013

g /20



Problem Formulaiion

Connections between SCSC and SCSK

@ Bi-criterion factors:
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Problem Formulation

Connections between SCSC and SCSK

@ Bi-criterion factors: [0 > 1.p < 1]
o min{f(X):g(X)>c}: M :
[0 p] approximation for F(X*) F(X) FF(X™)
SCSC is a set | )
X : f(X) < of(X*) and { e
g(X) > pc. pc g(X) C g(X7)
‘ Feasibie Range
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Problem Formulation

Connections between SCSC and SCSK

o Bi-criterion factors: o> 1.p<1]
o min{f(X):g(X)2c}: R T
[0, p] approximation for f(X*) f(X) af(X*)
SCSC is a set ——
X : f(X) < of(X*) and { 4 ; ;
g(X) > pc. pc g(X) C  g(Xx%)
Feasibie Range
o melg(X) : £(X) < b} I ek
[p. o] approximation for pg(X*)  g(X) g(X")
SCSK is a set I
X : g(X) > pg(X*) and P =
f-(X) < ob. f-(Xz) b f(X] ob
—— FeashieRange ——s
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Problem Formulation

Connections between SCSC and SCSK

o Bi-criterion factors: [0 >1.p<1]
o min{f(X) : g(X) > c}: ' { Ammrmﬂmmmm 3
[o. p| approximation for F(X*) F(X) af(X™)
SCSC is a set | )
X : f(X) < of(X*) and ———— i ———— i—
g(X) > pc. pc g(X) c g(Xx7)
Faasible Range
o max{g(X) : f(X) < b}: i il S
[p. o] approximation for pg(X*)  g(X) g(X")
SCSK is a set R
X : g(X) > pg(X*) and : I 1 ; _—
f(X) < ob. F(X7) b f(X) ob
—— Feasbie Bange

@ Theorem: Given a [o. p] bi-criterion approx. algorithm for SCSC,
we can obtain a [(1 + €)p. o] bi-criterion approx. algorithm for
SCSK, by running the algorithm for SCSC, Oflog %) times.

@ [ he other direction also holds!
ver & Bilmes, 2013 (UW, Seattie) SCSC/SCSK NIPS-2013 18 / 20




Algorithmic Framework

Curvature of a Submodular Function

@ Curvature:

fIV\ IVAY]
Kf =1 —min U _J) and Hazl—ming(‘f'_‘!) (2)
jev  f(j) = iev  g(j)
F(S) 4
cardinality ISl
@ Curvature is a fundamental “complexity” parameter of a submodular

function.

lver & Bilmes, 2013 (UW, Seattle) SCSC/SCSK NIPS-2013 11 / 20



Algorithmic Framenork

Hardness (Lower bounds) of the problems

Modular g

Submodular g

(““'g = 0)

(kg =1)

Modular £
(kr =0)

Submod f
(0 < ke < 1)

Submod F
(kf =1)

lyer & Bilmes, 2013 (UW, Seattle)

SCSC/S5CSK

NIPS-2013
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Algorithmic Framework

Hardness (Lower bounds) of the problems

Knapsack
Modular g Submodular g
(kg =0) (0 < kg < 1) (kg = 1)
Meodular £
FPTAS
(kr =0)
Submeod f
(0 < ke < 1)
Submod f
(ke =1)

lyer & Bilmes, 2013 (UW, Seattle) SCSC/S5CK NiPS-2013 12 /20




Algorthmic Framework

Hardness (Lower bounds) of the problems

Knapsack SSC/SK
Modular g Submodular g
(kg =0) (0 <rg <1) (kg =1)
Modular £ Bops o
(e — ) FPTAS ﬂg(i e ) 1—1/e
Submod
(0 < wf < 1)
Submod f
(kg =1)

NiPS-2013 12 /20
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Algorithmic Framenork

Hardness (Lower bounds) of the problems

Knapsack SSC/SK
| Modular g Submodular g
| (kg =0) (0 < kg < 1) (kg =1)
?ﬂ_‘it*;‘; ! FPTAS L(1—ere) 1—1/e
(S; imff <1 | Ut
oy S

SML/SS
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Algorithmic Framework

Hardness (Lower bounds) of the problems

Knapsack SSC/SK
Modular g Submeodular g
(kg =0) (0 < kg <1) (kg = 1)
Noowinta FPTAS L(1—e"e) 1—1/e
(kf =0) g
Submeod f N N
(0 < ks <1) =t 14—[\/5—1)(1—"*{)) i 1+{y/n— 1}(1 "‘f)) X 1+{v’ﬁ—1lil—ﬁf)}
Submod f
(ke — 1) Q(v/n) Q(v/n) Q(v/m)

SML/SS SCSC/5G5K
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Algorithmic Framework

Algorithmic framework

Algorithm 1 General algorithmic framework to address both Problems 1
and 2

yer & Bilmes, 2013 (UW, Seattle) SCSC/5CSK NiPS-2013 13 /20



Algorthmic Framework

Algorithmic framework

Algorithm 1 General algorithmic framework to address both Problems 1

and 2
it —12 -+ 71 5

2. Choose surrogate functions f; and g; for f and g respectively.

4: end for
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Algorithmic Framework

Algorithmic framework

Algorithm 1 General algorithmic framework to address both Problems 1

and 2
Efowili—1.2 .-+ _ T do

2. Choose surrogate functions f; and g; for f and g respectively.

3:  Obtain X* as the optimizer of SCSC/SCSK with f; and §; instead
of f and g.

4: end for

@ Surrogate functions: modular upper/ lower bounds or Ellipsoidal
Approximations.

yer & Bilmes, 2013 (UW, Seattle) SCSC/5CSK NIPS-2013 13/ 20



Algorithmic Framework

Surrogate functions

@ Modular Lower Bounds: Induced via orderings of elements:
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Algorithmic Framework

Surrogate functions

o Modular Lower Bounds:

f(X) < A% (X). where hy(a(i))

lver & Bilmes, 2013 (UW, Seartde)

Induced via orderings of elements:

)~ ) 23

SCSC/S5CK NIPS-2013
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Algorithmic Framewo

Surrogate functions

Induced via orderings of elements:

@ Modular Lower Bounds: _
F(X) < hY(X), where hy(a(i)) = f(Z;) — f(Ti1) =k

@ Modular upper bounds:
Upper bound-|

FX)<mya(X)=F(Y)= D fUIY\)+ Y f(jl0)

eY\X eX\Y | p o
= J ffhﬂl |G JJI

SCSC/SCSK NiPS-2013 14 / 20
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Algorithmic Framework

Surrogate functions
¢ Modular Lower Bounds: Induced via orderings of elements:

F(X) < h3(X), where h%(o(i)) = F(X;) — F(Zi_1)

@ Modular upper bounds:
Upper bound-i|

iver & Bilmes, 2013 (UW, Seattle) SCSC/50K NIPS-2013 14 / 20



Algorithmic Framework

Surrogate functions

@ Modular Lower Bounds: Induced via orderings of elements:

£(X) < h3(X). where b3 (a(i)) = F(Z;) — F(Xi_1) 2s3¢

@ Modular upper bounds:
Upper bound-i|

FX) <mya(X)=F(Y)— Y fGIV\)+ Y f(lY)

jey\x jeEx\y

e Approximations: Ellipsoidal Approximation gives the tightest
approximation to a submodular function.

lver & Bilmes, 2013 (UW, Seattle) SCSC/SCK NIPS-2013 14 / 20



Algorithmic Framework

Submodular Set Cover (SSC) and Submodular Knapsack
(SK)

Coverage/ Diversity

SSC: min{w(X) : g(X) > c}, SK: ma;({:g()() - w(X) < b},

Additive Costs
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Algorithmic Framework

Submodular Set Cover (SSC) and Submodular Knapsack
(SK)

Coverage/ Diversity

SSC: min{w(X) g(X) c}. SK: max{g(X} w(X) < b},

m—

Additive Costs

@ Lemma: The greedy algorithm for SSC (Wolsey, 82) and SK

(Nemhauser, 78) is special case of Algorithm 1 with g replaced by
its modular lower bound.
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Algorithmic Framework

Submodular Set Cover (SSC) and Submodular Knapsack
(SK)

Coverage/ Diuersity

S8 min{w(X) g(X) c}, SK: max{g( ) - w(X) < b},

p———

Additive Costs

@ Lemma: The greedy algorithm for SSC (Wolsey, 82) and SK

(Nemhauser, 78) is special case of Algorithm 1 with g replaced by
its modular lower bound.

@ Approximation guarantees are constant factor — 1 — 1 /e respectively.

lyer & Bilmes, 2013 (UW, Seattle} SCSC/5CSK NIPS-2013 15 / 20



Algorithmic Framework

lterative Submodular Set Cover (ISSC)/Submodular
Knapsack (ISK)

Coverage/ Diversity

SCSC: min{f(X): g(X) > c}, SCSK: max{g(X) . f(X) < b},

Co-operative Costs

@ Choose surrogate functions f; as modular upper bounds.

lyer & Bilmes, 2013 (UW, Seattle) SCSC/5CSK NIPS-2013
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i : Algorithmic Framework :
IL1N

lterative Submodular Set Cover (ISSC)/Submodular
Knapsack (ISK)

Coverage/ Diversity

SCSC: min{f(X): g(X) > c}. SCSK: rﬁ_ag{'g(X) . F(X) < b}

Co-operative Costs

@ Choose surrogate functions f; as modular upper bounds.

@ Fast iterative algorithms for SCSC and SCSK — lteratively solve SSC
or SK.

Iyer & Bilmes, 2013 (UW, Seattle) SCSC/5CK NIPS-2013 16 / 20



Algorithmic Framework

lterative Submodular Set Cover (ISSC)/Submodular
Knapsack (ISK)

Coverage/ Diversity

SCSC: min{f(X): g(X) > c}, SCSK: max{g(X) . F(X) < b},

e i

Co-operative Costs

@ Choose surrogate functions fe as modular upper bounds.
@ Fast iterative algorithms for SCSC and SCSK — lteratively solve SSC
or SK.

@ Theorem: ISSC and ISK obtain (bi-criterion) approximation factors

L M W |

';’_#

1—(n—1){1—kK+)

lyer & Bilmes, 2013 (UW, Seattle} SCSC/505K NIPS-2013 16 / 20




Algorithmic Framework

Ellipsoidal Approximation Submodular Set Cover
(EASSC)/ Submodular Knapsack (EASK)

Coverage/ Diversity

SCSC: min{f(X) : g(X) > c}, SCSK: max{g(X):f(X)<b

Co-operative Costs

@ Choose surrogate functions f, as Ellipsoidal Approximation,
SCSC and SCSK.




Algorithmic Framework

Ellipsoidal Approximation Submodular Set Cover
(EASSC)/ Submodular Knapsack (EASK)

Coverage/ Diversity
SCSC: min{f(X) : g(X) > c}, SCSK: max{g(X):f(X)<b

Co-operative Caosts

@ Choose surrogate functions f; as Ellipsoidal Approximation,

SCSC and SCSK.
@ Theorem: EASSC and EASK obtain (bi-criterion) approximsz

o _ vnlogn
factors of T = O\ 7micgn—i=n))-




Algorithmic Framework

Ellipsoidal Approximation Submodular Set Cover
(EASSC)/ Submodular Knapsack (EASK)

Coverage/ Diversity
SCSC: min{f(X) : g(X) > c}, SCSK: max{g(X):f(X)<b

Co-operative Costs

@ Choose surrogate functions f; as Ellipsoidal Approximation,

SCSC and SCSK.
@ Theorem: EASSC and EASK obtain (bi-criterion) approximsz

o __ vnlogn
factors of o O l—{\,ﬁmgﬂ—l)(l—ﬁ;])'

@ [hese algorithms also extend to SML/SS.




Algorithmic Framework
FLELLER

Ellipsoidal Approximation Submodular Set Cover
(EASSC)/ Submodular Knapsack (EASK)

Coverage/ Diversity
SCSC: min{f(X) : g(X) > c}, SCSK: max{g(X): f(X)<b

Co-gperative Costs

@ Choose surrogate functions f; as Ellipsoidal Approximation,

SCSC and SCSK.
@ Theorem: EASSC and EASK obtain (bi-criterion) approximsz

o _ vnlogn
factors of = = O( l—{\,'ﬁlogn—l)(l—ﬂf})'

@ [hese algorithms also extend to SML/SS.
@ [ his algorithm matches the hardness of this problem upto Ic
factors.




Limited Vocabulary data subset selection with Accao

diversity

@ Accoustic Diversity:




Limited Vocabulary data subset selection
diversity

@ Accoustic Diversity:

e Similarity matrix s;; between utterances i
and j (string kernel)

with Acco

L_right iow ore_you o
hiow GFE_JON WL Th yours

ocod how are_you
Ll how are_you

good thanks how are jou

sh howm are_yoo

L'm good Howm ore you

fire how are_you



Limited Vocabulary data subset selection with Accao

diversity

@ Accoustic Diversity:
e Similarity matrix s;; between utterances i

. ] slli_right hom ore_you o
and j (string kernel) NS h yous
e Submodular functions: T

hT how orE_you
cpe - . good thancs hew are yo
© Facility Location function: h )

L'm gooc how are you
g(Xj — b vV maxag_tx SU fine how are_you

| J.E



Limited Vocabulary data subset selection with Accao

diversity

@ Accoustic Diversity:
e Similarity matrix s;; between utterances i

right o gre_you o

and j (string kernel) piereon i s

e Submodular functions: ?fi."f'."-“f'-'-'.ﬁ‘i;';,,;, -

© Facility Location function: fa.m,,,."“" are_yeu
g(X_} = EIE v MAXex Sij i~ E_:;:_Jw

© Saturated coverage function
g(X) =2 icymin{} ;x5 8> ey Si}-




Limited Vocabulary data subset selection with Acco

diversity

@ Accoustic Diversity:
e Similarity matrix s;; between utterances i

right hom are_you o
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Results

@ Compare our different algorithms on the TIMIT speech corp
@ Baseline is choosing random subsets.

@ Observations:
@ All the algorithms perform much better than random subset
@ The iterative and much faster algorithms, perform comparab
slower and tight Ellipsoidal Approximation based algorithms.
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Conclusions/ Future Work

@ We proposed some very efficient (scalable) algorithms and t

algorithms for submodular optimization under submodular
constraints.

@ In the paper: Extensions to handle multiple constraints, and
non-monotone submodular functions.

@ Future Work: Investigate our new algorithms on different re
applications.

Thank You!




