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1. Graphical Models & Belief Propagation

» (Hyper) Graphical model: Representation of
dependency structure of a collection of random
variables with local constraints

G =(V,E)

» Each node i € V has random variable g; with a priori
distribution g;

» Each hyperedge ¢ € E has (hard or soft) constraint

Ye

» Probability distribution of the set of variables gy =

{Ji}iev: e
N(JV) = E I I (Pi(ai) I ‘lpc(a}:)
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» Visualize dependency structure: Factor Graph F
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» Visualize dependency structure: Factor Graph F

W

. icis an edge of F
c | if |
. iis constrained by ¢ |

» Interested in calculating/estimating:
- Marginals y; of o;

pi(o;) = Z u(oy)

0 ;€0 j

- Modes (configurations of maximal weight)
Omax = afgmax u
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» Iterative method for approximating marginals
and modes, exact if the factor graph is a tree
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» In general, 2 sets of equations* relating:
- “message from i to C:
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u._; = marginal i would have if it were only
constrained through c (and had uniform prior)




Belief Propagation

» Iterative method for approximating marginals
and modes, exact if the factor graph is a tree

» In general, 2 sets of equations* relating:
- “message from i to C:
u;_.. = marginal i would have if it ignored constraint c

- “message fromcto i’:

u._; = marginal i would have if it were only
constrained through c (and had uniform prior)

*Note: There are simplifications in problems in
which the variables or constraints have only
degree 2 in the factor graph
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» Fixed-Point Equations (exact on trees):
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General Belief Propagation Equations

» Fixed-Point Equations (exact on trees):

tisc(0;) < @;(0;) 1_[ Beisi (03)

c’3i,c’+c
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» Easy to implement corresponding update equations
» Often work well in practice




General Belief Propagation Equations

» Fixed-Point Equations (exact on trees):

tic(0;) < @;(0;) 1_[ Bersi (a3)

c’'3i,c’#c
Uc—i(0;) Z Ye(oy) 1_[ Hj-c ("}')
JkEJC\I jEC,j#—'i

» Easy to implement corresponding update equations
» Often work well in practice

» Question: When does the solution converge to the right
answer?
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LP is tight):
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- Sanghavi, Shah, Willsky (*09)
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Rigorous results on BP:

Convergence and correctness

» Maximum weight matching
- Bipartite graph (when solution is unique):
» Bayati, Shah, Sharma (‘08)
- General graph, b-matching (when corresponding
LP is tight):
- Bayati, Borgs, Chayes, Zecchina (‘09)
- Sanghavi, Shah, Willsky (‘09)
» Nash bargaining on networks (when
corresponding MWM LP is tight):
- Bayati, Borgs, Chayes, Kanoria, Montanari (‘11)

» Min—cost network flow:

- Garmanik, Shah, Wei (‘11)




2. A Simple Example of BP: Matching

» The model and graphical representation
» Derivation of BP for (max) weighted matching
» LP and statement of BP results




Maximum Weight Matching Problem

» Given
- Graph ¢ = (V,E)
3 WEightS {Wij}ijEE
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» Given
- Graph ¢ = (V,E)
- Weights {w;j}ijee
» Perfect matching M
MCEstVvieV {eeMle3i}|l=1
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Maximum Weight Matching Problem

» Given
> Graph ¢ = (V,E)
- Weights {w;;}ijer
» Perfect matching M
MCEstVieV [{eeMle3i}|=1
- _[o—]
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» Max—-weight matching problem: Find
Mpax S-t. W(Mpnay)= Yijem,, . Wi is maximal
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Graphical Model for Matching

» Here the variables sit on the edges and the
constraints on the sites of the graph ¢ = (V,E)

0if wvacant

1 if occupied

> Constraints: Vi€V, XienpXij =1

- Variables: Vij €E, x;; = {

1ifij €M
0ifij ¢ M

M < edge variables xz = {x;;} with x;; =




Graphical Model for Matching

» Here the variables sit on the edges and the
constraints on the sites of the graph ¢ = (V,E)

0if wvacant

1 if occupied

- Constraints: Vi€V, XienpXij=1

- Variables: Vij €E, x;; = {

1ifij €M
0ifij ¢ M
» Probability distribution of xz at “temperature” g:

wee) = 5 [ [0 [ Y = =1)

1jEE IEV  JEN(i)

M < edge variables xz = {x;;} with x;; =
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Derivation: BP Matching Equations on Trees
» Notational Simplification:

- Leave out constraint in equations, and enforce constraints
implicitly

» Messages:

- Since variables have only degree 2 in the factor graph, we
need only one set of equations, e.g. for ug; j; ,; = marginal
at ij if constraint at j is ignored, which we’ll just call g;_.;

= ﬂiﬁj(xij)-




Derivation: BP Matching Equations on Trees

» Notational Simplification:

- Leave out constraint in equations, and enforce constraints
implicitly

» Messages:

- Since variables have only degree 2 in the factor graph, we
need only one set of equations, e.g. for ug; j; ,; = marginal
at ij if constraint at j is ignored, which we’ll just call y;_.;
= i (xi5).

- Also, instead of taking just y;_,;(1) or y;_;(0), as the
message, try the log-ratio m; ,; defined by
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Iterative Calculations on Trees

’ ﬂ:—g (0)

1
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Iterative Calculations on Trees

’ ul—:r_jr (0)

1
B z_ﬁZkEN(i)\i Hic—i (1) Hpencin g He-i(0)
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eﬁwl}
H{’EN(l)\J #i’—u(o)
- s (0 - o _
—_ e-ﬁ'ml_,} _ B j(0) _ ZkeN(E)\je B(wij — mp_i)

Hi—j (1)
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» Define "message” m;_,; on directed edge i— jby

mt—»}(o) = Wij
'ml_,j (t + 1) = Wi}'

Jmax my.;(¢)
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» Define "message” m;_; on directed edge i — j by

m;;(0) = wy;
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» Similarly can show: Define M, at time t, M(¢):

For each site i choose as the candidate edge into i the
edge if such that

m,_;(t) = klélﬁg) my_.;(t)
and add this maximum message edge to the candidate
‘matching” M(t). (Note M(t) may not be a matching.)
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BP Algorithm for Matching

» Define "message” m;_,; on directed edge i — j by

m;;(0) = wy;

m;_i(t+1) = w;; — .3 my_.;(t)

» Similarly can show: Define M,,,, at time t, M(¢):

For each site i choose as the candidate edge into i the
edge i such that

me_;(t) = kiélﬁé) my_.;(t)
and add this maximum message edge to the candidate
‘matching” M(t). (Note M(t) may not be a matching.)

» Note: This is exact on trees.

» Question: Can we determine when else it converges
to the correct answer, and how fast?
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Rigorous Result on BP for Matching

» Consider the corresponding LP relaxation and its dual:

> LP: max X;jeg WijXi;
subj. to 0 <x; <1
EjEN(i) Xij = 1
> Dual: min X;ice Aij — Liev Vi
subj. to A;; =0

Aij = wij +y; +;

» Theorem (Bayatu, Borgs, Chayes, Zecchina '09). If the LP has a unique
optimum which is integer, then M(t) converges to the

correct solution M,,,.... In particular M(t) = M,,,,,. for

2|V| "
t 22— max|y|,

where y* is an optimal solution of the dual LP and
e = H}}ﬂ{lwij +y; +y;| >0}
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3. The Steiner Tree Problem
» Given
- Graph ¢ = (V,E)
» COStS {6 )i G =0
- Set of “terminals” (or “privileged nodes”) UV

» Problem: Find a tree T € G containing all terminals, i.e.
all nodes in U, which minimizes the cost:

(M= ) o

ij €EE(T)
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» Given
- Graph G = (V,E)
Costs {ij}ijEE! ij =0
- Set of “terminals” (or “privileged nodes”) U €V

» Problem: Find a tree T € G containing all terminals, i.e.
all nodes in U, which minimizes the cost:

C(T) = Z Cij
Lj €E(T)
» The non-terminals which appear in the
minimizing tree are called Steiner nodes

» ldea: Do belief propagation to find minimizing tree




3. The Steiner Tree Problem

» Given
- Graph ¢ = (V,E)
Costs {6 )ijers 65 =0
- Set of “terminals” (or “privileged nodes”) U c V

» Problem: Find a tree T € G containing all terminals, i.e.
all nodes in U, which minimizes the cost:

C(T) = Z Cij
ij €E(T)
» The non-terminals which appear in the
minimizing tree are called Steiner nodes
» ldea: Do belief propagation to find minimizing tree

» Difficulty: Don’t have a local way to enforce the global
constraint of a (connected) tree




Bayati, Borgs, Braunstein,

N ew Re p re S e n tat i 0 n Chayes, Ramezanpour,

fecchina ("08)




Bayati, Borgs, Braunstein,

N ew Re p re S e n tat i 0 n Chayes, Ramezanpour,

fecchina ('08)
» Designate one terminal r € U as root and set ¢, =0
» Vi € V, introduce two variables
- Distance: d; €{0,1, ..., |V]| —1}
- Parent: p; € N(i) U {*}

. . @ d=20

» If Tis a Steiner tree, set P
- d; =disty(i,r) VieV(T) & il

= if i # V(T) =

parentofiin T otherwise *




Bayati, Borgs, Braunstein,

N ew Re p re S e n tat i 0 n Chayes, Ramezanpour,

Zecchina (‘08)
Designate one terminal r € U as root and set ¢, =0
Vi € V, introduce two variables
- Distance: d; €{0,1, ..., |V| — 1}
- Parent: p; € N(i) U {#}

v

v

] . e d=0
» If T is a Steiner tree, set s
- d; =disty(i,r) VieV(T) 4 s
. if i £ V(T) »g=2
> pg=14 i if i=vr \ o d— w
parentofiinT otherwise *

v

Cost of the tree: C(T) = Xiey(c) Cip; 1(pi # *)
Constraints:
- p;Fx Viel
- fp,=jé{xr},thenp; #xand d; =d; — 1

v




Graphical Model

» Define interactions enforcing these constraints (and
including the weights):

Yir = |1 —1px = DI(d; = di — 1)][1 — 1 = N(p; = *)]

and
@; = [1 - 13 € DI(p; = *)] exp|—Bcip,1(p; = *)]
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including the weights):
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and
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» Then the probability distribution is
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Graphical Model

» Define interactions enforcing these constraints (and
including the weights):

Vi = |1 —1pr = DI(d; = di — 1)][1 — 1 = N(p; = *)]
and
@i = [1 -1 € WI(p; = *)] exp|—Bei, 1(p; = *)]
» Then the probability distribution is

ﬂ({dirpi})=;1_[§0i l—[ Yij

LEV L,JEV; {JEE

» Variants:
See Angel, Flaxman,
- Bounded diameter D tree: Take d; €{0,1,...,D} |Wilson ('08 -"12)

- Prize—collecting Steiner tree: Replace ¢; by soft constraints,
removing I(i € U) and adding “prizes” to cost function
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BP Results on the Steiner Tree

» Rigorous Results: Minimum spanning tree

- If BP converges, then it converges to the correct solution (Bayati,
Braunstein and Zecchina '08)

» Non-Rigorous Results: Minimum Steiner tree

- Tests of our BP algorithm vs. LP algorithms for a benchmark
library of several dozen Steiner tree instances (SteinLib), show
that our algorithm is much faster. Also, it gets better optima in
all but two (very small) instances (Bailley-Bechet, Borgs,
Braunstein, Chayes, Dagkessamanskaia, Francois, Zecchina ‘11)

- On biological data sets in the Fraenkel Lab at MIT, the LP
algorithms were too slow to give any results on human data




BP Results on the Steiner Tree

» Rigorous Results: Minimum spanning tree

- If BP converges, then it converges to the correct solution (Bayati,
Braunstein and Zecchina '08)

» Non—-Rigorous Results: Minimum Steiner tree

> Tests of our BP algorithm vs. LP algorithms for a benchmark
library of several dozen Steiner tree instances (SteinLib), show
that our algorithm is much faster. Also, it gets better optima in
all but two (very small) instances (Bailley-Bechet, Borgs,
Braunstein, Chayes, Dagkessamanskaia, Francois, Zecchina ‘11)

> On biological data sets in the Fraenkel Lab at MIT, the LP
algorithms were too slow to give any results on human data

» Open Problem: Find sufficient conditions for BP for the
MWST to converge to the correct solution, or at least to a
olution within € of an optimizer.




4. Application to Systems Biology

» The Biological Problem

» Formulation of the Algorithmic Problem: The
Prize-Collecting Steiner Tree (PCST)

» Biological Network Applications of the PCST

» A Variant Algorithmic Problem: The Prize-
Collecting Steiner Forest (Parallel Networks)

» Construction of Patient-Specific Networks




The Biological Problem

» Standard Dogma: DNA = RNA — Proteins




The Biological Problem

» Standard Dogma: DNA = RNA - Proteins

= Gene Regulatory Network

Protein
Interactome
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Gene Regulation and Disease

» Problems with the gene regulatory network
are the sources of many diseases




Gene Regulation and Disease

» Problems with the gene regulatory network
are the sources of many diseases

» How do we infer the network structure from
partial data?

» Can we identify particular nodes on the

network responsible for dysregulation in
certain diseases and individuals?

» Are one or more nodes in combination viable
drug targets? ——
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Mass spectrometry
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Affinity capiure mass-spec
Protein-protein interactions

ChiP-S=q, Dnase-Seq, ...
Protein-DNA interaction

Microarrays

Genetic/Chemical




Drug Discovery Paradigm

Mass spectrometry

Points of
intervention m
Yeast two-hybrid
Affinity capiure mass-spec
Protein-protein interactions - -@
C Qo
o .
. Py
_ Computational L 3 o o
ChiP-Seq, Dnase-Seq, .4 f . Models ®
Protein-DNA interactions e 1
RENA-Seq - = i
66

- Genetic/Chemical
Screens
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presence of which other gene under a particular set of
conditions
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» From the differential expression of a particular gene,

we infer the node weight of the corresponding
transcription factor protein (prize in the PCST)




Gene Expression Data

» Microarrays tell us which gene is expressed in the
presence of which other gene under a particular set of
conditions

» From the differential expression of a particular gene,
we infer the node weight of the corresponding
transcription factor protein (prize in the PCST)

» To %et edge weights between two proteins, we use the
Fro ability of interaction of these two proteins inferred
rom (properly weighted) databases of known
interactions for the given organism




Gene Expressmn Data

aene-r eguiatory ]

- -‘[ ﬂerwom

= ==

===

» Microarrays teII_ us which gene is expresseq in the
presence of which other gene under a particular set of

conditions
» From the differential expression of a particular gene,

we infer the node weight of the corresponding
transcription factor protein (prize in the PCST)

» To get edge weights between two proteins, we use the
F obability of interaction of these two proteins inferred
rom (properly weighted) databases of known

Interactions for the given organism

Question: How do we determine the network
e, | most likely to have produced this data?

'S ﬂ.l




Formulation of the Problem:
The Prize-Collecting Steiner Tree




Formulation of the Problem:
The Prize-Collecting Steiner Tree

» Given
- Graph ¢ = (V,E)
= Costs {6 )iers 65 =0
- Set of “prize terminals” U € V with prizes {m;};cy, m; > 0
- Parameter A > 0

» Problem: Find a tree T < ¢ which minimizes the cost:

er )= Z & —A Z TT;

ijEE(T) i€V (T)




Formulation of the Problem:
The Prize-Collecting Steiner Tree

» Given
- Graph ¢ = (V,E)
= Costs {6 hiress € =0
- Set of “prize terminals” U € V with prizes {m;};cy, m; > 0
- Parameter A > 0
» Problem: Find a tree T € ¢ which minimizes the cost:

C(T)= Z Cij —A Z T
LjEE(T) LEV(T)

» Note: As 1 — oo, this turns into the standard Steiner
tree problem with terminals U = {i|mz; > 0}.
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Mapping to Biological Data

» Find the tree which minimizes

£XT) = Z C;; —A Z TT;

oy {jEE(T) [ev(T)
e
cij = —log prob(ij exists)

where prob(ij exists)is the
probability that proteins i and

j interact in the given organism
(from databases)




Mapping to Biological Data

» Find the tree which minimizes

£tr) = Z G —A Z TT;

0 ijEE(T) ieV(T)
Vit :
ﬁ"t 53“ ......
§ ; -
¢;j = —log prob(ij exists) m; = —10g Pvatue (i)

where prob(ij exists)is the
probability that proteins i and

j interact in the given organism
(from databases)

where p,...(i) is the p—value of
the differential expression of the
gene corresponding to protein i,
in the given experiment
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Steiner Nodes

» In the standard Steiner tree problem, nodes which are
included in the minimizing solution but which are not
terminals, i.e. not in the set U, are called Steiner nodes

» Similarly, in the PCST, nodes which have zero (or low)
prizes but which are included in the minimizing solution

are called Steiner nodes




Steiner Nodes

» In the standard Steiner tree problem, nodes which are
included in the minimizing solution but which are not
terminals, i.e. not in the set U, are called Steiner nodes

» Similarly, in the PCST, nodes which have zero (or low)
prizes but which are included in the minimizing solution
are called Steiner nodes

» In the context of the gene regulatory networks, Steiner
nodes correspond to proteins whose genes which are not
differentially expressed a lot, but which nevertheless seem
likely to participate in the network = identification of
oroteins not previously know to participate in the pathway
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i‘\iﬁ' - 4689 Proteins
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© = Gives set of weights {c;;} for relevant proteins in

—= =  pheromone response pathway
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(Bailley—Bechet, Borgs, Braunstein,

Re S p 0 n S e Path Way Chayes, Dagkessamanskaia, Francois,

Zecchina- PNAS ‘11)

» Yeast protein signal transduction network:
i %& - 4689 Proteins

%‘1_ > 14928 Protein-Protein interactions
I - Gives set of weights {c;;} for relevant proteins in
pheromone response pathway
» Considered 56 large—scale gene expression
data sets used to reconstruct the yeast

pheromone pathway. For each data set
- Get set of prizes {m;}
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Example 1: Yeast Pheromone

(Bailley—Bechet, Borgs, Braunstein,

Re S p 0 n S e Path Way Chayes, Dagkessamanskaia, Francois,

Zecchina: PNAS ‘11)

» Yeast protein signal transduction network:
& - 4689 Proteins

%ﬁf‘f - 14928 Protein—Protein interactions
. Gives set of weights {c;;} for relevant proteins in
—= =  pheromone response pathway

» Considered 56 large-scale gene expression
data sets used to reconstruct the yeast
pheromone pathway. For each data set

Get set of prizes {m;}

»  Construct 56 solutions to bounded-D PCST
problem




Example 1: Yeast Pheromone

(Bailley—-Bechet, Borgs, Braunstein,

Re S po n Se Path Way Chayes, Dagkessamanskaia, Francois,
Zecchina: PNAS ‘11)
» Yeast protein signal transduction network:
% - 4689 Proteins
.. - 14928 Protein-Protein interactions

: - Gives set of weights {c;;} for relevant proteins in
-—= =  pheromone response pathway

» Considered 56 large-scale gene expression
data sets used to reconstruct the yeast
pheromone pathway. For each data set

- Get set of prizes {m;}
Construct 56 solutions to bounded-D PCST
problem

“Merge solutions” to get one network
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» Two types of proteins on

network .

- Proteins differentially expressed in
pheromone response and previously
discovered by transcriptomic
studies (terminals)
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» Two types of proteins on

network

- Proteins differentially expressed in
pheromone response and previously
discovered by transcriptomic
studies (terminals)

- Proteins not differentially expressed
but bridging between different
subnetworks (“Steiner proteins”)

Question: Are the Steiner
proteins important in the
pheromone response pathway?




Testing a Steiner Node

» Did an experiment to knock out the gene
corresponding to COSS8




Testing a Steiner Node

» Did an experiment to knock out the gene
corresponding to COSS8
—

Pheromone response pathway failed.




Testing a Steiner Node

» Did an experiment to knock out the gene
corresponding to COSS8

-
Pheromone response pathway failed.
A C
“Experimental Peii
proof” of the SESe
importance of |° T
the Steiner node | _=o = s
N ==

Aasponss



From Yeast to Mammals

» Problems (mammals relative to yeast):
- Incomplete interactome data
- Ten times as many transcription factors
- Huge intergenic regions




Example 2: Glioblastoma Pathways

» Glioblastoma:

» particular form of brain cancer
- the human cancer with the worst ocutcome
> much more common in men than women

(n=52)

Proportion of Total Cohorl Surviving

0 500 1000 1500 2000 2500

Dlege Presentation Post-op Recurrence
Pope W B et al Radiology 2008:249268-277 Weil R} (2006) PLoS Med 3(1): e31.




Can we find GBM pathways using
the PCST? (Fraenkel Lab, MIT, work in

progress using our PCST algorithm)

PRt Jl J 1 i
Mass spectrometry

-a»

Interactome
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Always good to choose receptor proteins
since these often begin signaling pathways




How to choose the root of the PCST?

Always good to choose receptor proteins
since these often begin signaling pathways

Try EGFR

EGFR




How to choose the root of the PCST?

Always good to choose receptor proteins
since these often begin signaling pathways

Try EGFR -y

» EGFR variant lll mutation is
most common EGFR
mutation in human cancer

» Present in 60% of GBMs

» EGFRVIII expression
correlates with shorter life
expectancies
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» Top 5 Nodes ranked by betweeness centrality®:
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Identify interesting Steiner nodes

» Top 5 Nodes ranked by betweeness centrality*:
SRC,[ESR1] HDAC1, CREBBP, GRB2

SRC well-known to be active in many types of

cancer, and had relatively large “prize’

What about ESR1?

- No “prize” and not previously identified for Glioblastoma
- What is ESR1?

- This is the Estrogen Receptor

First pathway link between glioblastoma and
gender!

Experimental test: EGFR inhibitor and Estrodiol
together inhibit the growth of GBM cells in culture
better than the EGFR inhibitor alone
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Identify interesting Steiner nodes

» Top 5 Nodes ranked by betweeness centrality*:
SRC,[ESR1] HDAC1, CREBBP, GRB2

SRC well-known to be active in many types of

cancer, and had relatively large “prize’

What about ESR1?

- No “prize” and not previously identified for Glioblastoma
- What is ESR1?

- This is the Estrogen Receptor

First pathway link between glioblastoma and
gender!

Experimental test: EGFR inhibitor and Estrodiol
together inhibit the growth of GBM cells in culture
better than the EGFR inhibitor alone

= possible drug therapy for glioblastoma

| *Relative percentage of |
' shortest paths in graph |
' through given node

w

w

v
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Multiple Signaling Pathways

(Tuncbag, Braunstein, Pagnani, Huang, Chayes, Borgs, Zecchina, Frankel; RECOMB '12)

» How do we explain multiple disjoint signaling
pathways altered in a particular condition?

» Use Prize-Collecting Steiner Forest:

» Just like prize-collecting Steiner tree, but now we
also specify that there be k disjoint trees* (= forest
F) as the minimizing solution of

CP= Y -2 ) m

ijEE(F) iEV(F)

| *Or let k vary by adding another term to €




Multiple Signaling Pathways

(Tuncbag, Braunstein, Pagnani, Huang, Chayes, Borgs, Zecchina, Frankel; RECOMB '12)

» How do we explain multiple disjoint signaling
pathways altered in a particular condition?

» Use Prize-Collecting Steiner Forest:

» Just like prize-collecting Steiner tree, but now we
also specify that there be k disjoint trees* (= forest
F) as the minimizing solution of

C(F)= Z Cij —A Z TT;
LjEE(F) LEV(F)

» To implement PCSF, just add an “artificial node” A4,
connect every node i to A with strength ¢;, = new
PCST with 1 more node and |V| more edges

- *Or let k vary by adding another term to ¢
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Prize Collecting Steiner Forest
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Derived Forest: Yeast Pheromone
Response Network
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Derived Forest: Human
Glioblastoma Data Set

Nucleus
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Ex. 3: Extension to Patient-Specific
Networks (Multi-PCSF) for Breast Cancer

TCGA Breast Cancer Data: X OA A TR
: e & L3 \®
Learn networks of individual IMes=eme [7 =g »@ s P
- : ik XA ibaa)
breast cancer patients, 1 §%% 4% ke &3V
extract shared features, &  , ___ . .. _
= ' / & -] o -
update algorithm for o ¥ X .
- 18 = Clusster 1 i Chister k
individual patients. Iterate. lr NG ¥+
3. Identify similar | ' I a o 6. Learmn
forests ) Py S oy -t new forests
i ==
4, Extract shared
characteristics _ \
1 / 3 ) )
4 e e { \e
5. Add prizes to S g L U p AT § o
shared nodes Ly ¥ . — ¥ g, )
ﬁ" £YL% .:.'_'Ii. FYLS

(Gitter, Braunstein, Pagnini, Baldassi,
Borgs, Chayes, Zecchina, Fraenkel;
PSB‘14)
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TCGA Breast Cancer Data: iy U .
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Ex. 3: Extension to Patient-Specific
Networks (Multi-PCSF) for Breast Cancer

TCGA Breast Cancer Data: "1“‘?. A XA
Learn networks of individual »==>e ood 50 o o5
breast cancer patients, 1 TN VT PR EEIN
extract shared features, & |, __ ... ~°
update algorithm for forests. 9 N
individual patients. Iterate. } r\\‘_“‘"ﬂ‘ﬂl % G A
> Highly patient-specific e et A S N ot R

networks, which have 1 A L Siaesad

input from networks of & Extract shaved

other patients. t"‘”ci”‘“""‘ \
E.g., found subclass whose O 3{ 42 Qe, :_;_
Steiner nodes implied they might | saredncses "8, "7 - ??;. )05 S
be treatable with drugs for KIT- - . 2 ’
positive gastrointestinal tumors

(Gitter, Braunstein, Pagnini, Baldassi,
Borgs, Chayes, Zecchina, Fraenkel;
PSB‘14)
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Summary

» Graphical models give us succinct representations for
capturing local dependencies among random variables,
and (with the right representation) even some global
dependencies, e.qg., the prize—collecting Steiner tree

» Belief propagation give us a way of approximiating
marginals and modes of graphical models

Rigorously can be proved to converge quickly to the correct
solution in particular cases (e.g., b-matching when LP has
only integral optima)

- In practice converges to near optimal solutions very rapidly
on known benchmarks and new biological data sets

» There is biological evidence that BP algorithms do well
in identifying regulatory pathways among proteins,
and also identify “Steiner proteins”, suggesting
(patient-specific) drug targets for human disease




Thanks for your attention
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Message Passing Inference with
Chemical Reaction Networks

Nils Napp Ryan P. Adams

nearin Applied Sciences
Cambs -:'.;-5. u Cambridge MA
nnapp@wyss_harvard.edu rpafiseas _harvard.edn

Neural Information Processing Systems
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Implement inference on a molecular level
— Enable estimation of latent variables
— Take into account complex dependencies
— Extract information from noisy sensors

ESET NOD32 Antivirus

i An emror cccurred while downloading update files.
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An emor cccurred while downloading update files.
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~ 1ddress these problems!
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* Unidentified Parts
* “Unpredictable” Circuits Behavior
* High Complexity Circuits

* Variability in Behavior

Douglas, Bachelet, Church. Science 2012

Kwok, Nature 2010

ML techniques can'address these problems!




XX\

Implement inference on a molecular level
— Enable estimation of latent variables
— Take into account complex dependencies
— Extract information from noisy sensors
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Chemical reaction networks are the
assembly language of small scale devices.

o ¥




Set of species: Z = {Z,.Z,.....Z\}

k,
rZy+ .. +ryly = pmZi+ .+ puly

Reaction: R, = (1%, k,, pY)

Reaction Network: R = {R,, ..., Rg}




| Reaction Networks ,%

Set of species: Z = {Z,.Z5.....Zy}
k.
rli+....+ruly = Py + ... +puly
Reaction: R, = (r?, k,, p?)

Reaction Network: R = {Ry. ..., Rg}

Example: 7 — {A B, C}
e
i feata A—I—C I'l =(1,2,0)T 1‘2 =(0:01 I)T
ciy p! = (1,0,1)T p2=(0,0,0)7

E—
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1SS Action Kinetics

Concentration: [Z,,

dZ,] @ S )
dt N 'gl kq mnzl[zm] h (pm o rm,)

The Law of Mass Action:

Given a Chemical Reaction Network the Law of
Mass Action gives a set of non-linear ODEs
that describe the evolution of concentrations.




Bipartite graph between factor nodes and variable nodes

Describes how join probability of random variables
represented by variable nodes factors:

it variahles

- T e i =
connecied =_.-_:I'.'"j

Pr(x) - PT(XI? XZ: '"‘!XN) = % H;r:l l1':"_:;'(}cj) Subset of

Non-negaitve scoiar Tuncho
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» Compute marginal probabilities Pr(X.) taking into account dependencies.
» (Can be done by “message passing” two different types of messages.

Sum messages (factor to variable) : S/ 7" = Z (%7 = k) H PL r:"—m

n‘coe{ 1)\ n

ki —k
Product message (variable to factor) : P = [[ s ™

JEnein)'\y
Marginals at variable nodes given by: priyx, - i) = H U=

JEnein)

S
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Each message is represented by a set of belief species.

* [f the messageis k-entry vector then the set of belief species
has k-+1 species.

* The extra species represents unassigned probability.

* QOther messages catalyze assighment of unassigned probability
mass, but all assighments say with the set.

P(l—s- 3)

\—3-
v i —

o (3—1

Message in Graph

e

P(I—:-S)
P(1—>3; 0

P(l—.»:}} = 1 {1—=3)
= | pt—3) P

2 1—+3)

e

Dr‘gbab{iiw Chemical

Vector Representation :;




/

plri=ej} i3 =+n)
P = ] s ) é
J'Ene{n)\y

Produce messages can be implemented as

: ; 2 Mored . . .’
Phn—l-_;)_l_ ZSE —n) p{kn-a-_)}_l_ ZSLJ —n)

J'€ne(j)\n 7' E€ne(j)\n

At steady state:

Ky n—j ren{3’ —n
PrP1= JI 82971

- (n—7)
fproa [P ] j*€ne()\n




Produce messages can be implemented as

h:m

(n—7) Z (3'—=n) (n—j3) |, E: (3" —=n)

7' €ne(j)\n 7' €ne(j)\n

At steady state:




Sum messages can be implemented as:

(7—n) (n’—3) Yalut=ne) (J—mn) , (r'—7)
s+ YRS oy Y
n’Cne(j)\n" n’Ene(j)\n"

At steady state:
— 877 = Y wi(x =K) H[F"" e

K, =k n'€ne(j)\n =

[Sg™™™)




Sum messages can be implemented as:

Sl,‘_;—.'-—nl E :p{n’—:-j'l E‘Jiszk” S{J—',-n'l § :p[n'—:-_;}
0 B 7 k‘}, k * k'}, :

n’cne(j)\n" n’Ene(j)\n"

At steady state:

Ky

Z‘-"'J(xj = kJ) HEPL?’I—:-J;]

K=k n’Ene(j)\n

Ratios correspond to sum messages.
When [S,] is small they approximate probability directly.
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Recycle probability within sets of belief species.

*» Messages processed continually and the system
adapts to new information.

* Recycling rate determines turnover and speed.

PLn—)_—j) kg P‘(]n—;-j)
Recycling  Assignment

: ’ : (1—23) ky p(1—3)
G e so—") P Po p(1—3) & p(1=3) 1 p(1-3)
p(1=3) kg p(1-3) 1 0 TR 2
2 0

Assignment Recycling
Pr. = Prg

Reaction Structure

Generic Example for P“‘*g) B

I 16




¥ U2 V3

o | Uy | X2 U5

Ys
U7
vi(l) v¢1(2) vi(l)  ¢3(2) wa(l) ¥a(2) val(l) wa(2) vs(3) vr(l)  ¥2(2)
1 01 01 1 1 01 2 i 1 1 1
Pal-.1)  ¥ae(-,2) ws(-,1) s(-.2) ws(-.3) ve(-.1) wel-,2)
wall,-) 1 0.1 vs(l,-) 01 z 01 vell,-) 0.1 01
wal(2.-) 0.1 3 vs(2.-) 3 0.1 1 Yel(2, -) 1 0.1




o)

2-States —— s
. ~ 3-States
2-States

2-States =

vi(l) vi(2) vi(l) v3(2) val(l) va(3) Ue(1)  ¥i(2)
1 0.1 01 1 1 1 1
val-.1) va(-,2) vs{-,2) ve(-.1) vel-,2)

Yall, ") 1 0.1 ¥s(l, ") 2 Ye(l.-) 01 01
¥a(2.-) 0.1 3 vs(2, ) 0.1 we(2.-) 1 0.1
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=3} Pr(X:=?)

Pr(X;=1) ] Pr(X;=2)j] Pr(X

Pr{x;) Pr(x2) Pr(xs)
Pr(x;) Pr(xs) Pr(x;) Pr(xs)
e:tact 0.692 | 0.308 0.598 | 0.402 0.392 | 0.526 | 0.083 0.664 | 0.336
slow 0.690 | 0.306 0.583 | 0.393 0.394 | 0.520 | 0.083 0.665 | 0.333
fast 0.661 | 0.294 0.449 | 0.302 0.379 | 0.508 | 0.080 0.646 | 0.326
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E—
Compile Belief Propagation on arbitrary discrete valued factor

graphs into sets of chemical reactions.

Probabilities and messages are represented sets of belief
species which are conserved.

Message species catalyze each other.

Works because the system dynamics have the same form as
the computation we would like to do.

Law of Mass Action
d[Zm] Q |
: L
dt rfgl k Z’" (D — Zin)
J"\J—'“ = Z‘Jlt = K) Pﬂ—'_rl PLﬂ—*JJ:SL:;r_‘_n}
e M= i jEneln)\j
Sum message in Belief Propagation Product message in Belief Propagation

S
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e to go next

* Apply to specific bio-sensor models
* Simplify machinery for binary RVs
* Look for inference network motives

* Collaborate with sys-bio community help solve
noise and uncertainty problems in current
systems, e.g. parameter learning
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2

Radhika ngal (Harvard) David Soloveichick (USF)

"

Self-Organizing
Systems
Research Group

Please visit us at poster 568 this evening.

EEEd HARVARD
School of Engineering
and Applied Sciences
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to go next

* Apply to specific bio-sensor models
* Simplify machinery for binary RVs
* Look for inference network motives

* Collaborate with sys-bio community help solve
noise and uncertainty problems in current
systems, e.g. parameter learning
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Information-theoretic Lower Bounds for Distributed
Statistical Estimation with Communication Constraints

Yuchen Zhang John Duchi
Michael |. Jordan Wartin J. Wainwright

University of California, Berkeley

NIPS 2013

Communication Lower Bounds NIPS 2013 1/18



A Modern Data Center

@ Holds 10,000 servers.
@ Data storage and data processing highly distributed.

@ Communication cost > computation cost.

Yuchen 7hang (UC Berkeley) Communication Lower Bounds NIPS 2013



A Fundamental Trade-off

When learning from distributed data,
Target 1: maximize statistical accuracy.

Target 2: minimize communication cost.

Yuchen Zhang (UC Berkeley) Communication Lower Bounds
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Main Result

Communication-Accuracy trade-off:

Frron
/

Cenfralized
optmalrate F——————

Distributed Statistical Estimation

Yuchen Zhang (UC Berkeley)

Communication

Communication Lower Bounds

NIPS 2013



Statistical Estimation

Given: i1.i.d. data drawn from unknown distribution P
Goal: estimate a parameter #(P).

Yuchen Zhang (UC Berkeley) Communication Lower Bounds NIPS 2013



Distributed Statistical Estimation

@ Data is stored on m separate machines.
@ Each machine generates a message based on its local data.

@ OQutput a3 message-based estimator.

« Machine 1 &

X1~ AR 4!
/.z"f. \\\,_

/ X ! = Y. N = ;

i S ;_f 12—~ Machine 27 Ny 5 Output Estimator:
Distribution P | - Fusion Center i—- Y. Y Y

1‘\. X "__r o ( 1- 2 ..... m)

.\‘. m ------ Ym’f'/
".\. ///’

b W 7
"t\[ac-hjne m{
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Distributed Statistical Estimation

@ Data is stored on m separate machines.
@ Each machine generates 2 message based on its local data.

@ OQutput a message-based estimator.

;/!}.[ac-hjn.; 1A

X1, ¥
/_." ‘\-._‘\
7 3 "\\
74 | = ;
Uakinss: | X2~ Machine Zaﬁr_?;ﬁ_:«” Output Estimator:
e i ' —=! Fusion Center ]—’ p
Distribution P | P | A(Y,. Y. Y )
Y j L 1- 2 ..... m
7 S Yo
, //
P
r’!

"“:Machjﬂe m

@ Statistical accuracy: E[||f — 81|3]
@ Communication cost: » . ; Length(Y;)
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Example: Gaussian Location Model

m machines, each machine gets X; ~ N (#.1). Want to estimate 6.

-
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Example: Gaussian Location Model

m machines, each machine gets X; ~ N(#.1). Want to estimate 6.

- Y;\“‘ R
X, —={Quantize /; H — %Z:ﬂ:l Y;:
...... z/}n/.f"'
X Quantize -~
m
Analysis:

@ Estimation error: E[(ﬁ —6)?] = . (optimal rate)

@ Communication cost ~ m.

Question: Is there a better estimator?

NIPS 2013

Communication Lower Bounds
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Minimum Possible Communication

Answer is: NO.

Yuchen Zhang (UC Berkeley) Communication Lower Bounds NIPS 2013



Minimum Possible Communication

Answer is: NO.

Theorem

If each of m machines gets one i.i.d. sample from N(#.1), then any
optimal estimator of # must communicate (m) bits.

Yuchen Zhang (UC Berkeley) Communication Lower Bounds NIPS 2013 8 /18



Gaussian Location Model (n > 1, d > 1)

Given: m machines, each machine gets n i.i.d. samples from N (8. 0%y 4).
Goal: find the Gaussian mean # € R?.

Yuchen Zhang (UC Berkeley) Communication Lower Bounds NIPS 2013



Gaussian Location Model (n > 1, d > 1)

Given: m machines, each machine gets n i.i.d. samples from N (0. 0% l4.4).
Goal: find the Gaussian mean # € R?.

Theorem

If an estimator is allowed to communicate B bits, then

max E[(6—0)2]> C- < max{l o }

oc[—1.1]¢ mn "Blog m

Yuchen Zhang (UC Berkeley) Communication Lower Bounds NIPS 2013 g/18



L ower Bound Curve

Frror

optmal rate }---—--—-

Distributed Statistical Estimation

dm
Communication

Yuchen Zhang (UC Berkeiey)

Communication Lower Bounds

NiPS 2013
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Achievability of Lower Bound

Y Xl :
; —— Quanfize %

n
- e =
n E - ZI—
,,,,,, Y@,,__,.
) s ¥ ... L
_"f_:] = '-=!Quan[ize d
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Achievability of Lower Bound

7 =
SEEEERSTE e =) Qllﬂ]l'[lze [ 1

n :\HRH

X’} [ Y T

_..-_1 ] 3 2 L 1

: ez —b=1ym.Y,

- e | YZ@,’

Ej:l Xm.} | . ,_f/

n

Analysis:

@ Estimation error: E[||d — 8|3 = © (%) (optimal rate)

@ Communication cost: O(dm log(mn})).

Conclusion: ©(dm) bits of communication are necessary and sufficient.

Yuchen Zhang (UC Berkeley) Communication Lower Bounds NIPS 2013



Conseguence for Regression Problems

Linear Regression

Given: m machines, each machine gets n i.i.d. inputs (x;. z;) satisfying
x; cRY and z =6"Tx; + w;

where w; ~ N(0.52).
Goal: find the regression coefficient # € RY.

Probit Regression

Given: m machines, each machine gets n i.i.d. inputs (x;. y;) satisfying

. = Rd - §{ 1 with probability d(87 x;)
eSS { 0 with probability 1 — ®(87 x;)

where @ is the CDF of standard normal distribution.
Goal: find the regression coefficient # € R.

Yuchen Zhang (UC Berkeley)
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Consequence for Regression Problems

L ower Bound

For linear regression and probit regression, any optimal estimator of ¢
must communicates Q(dm/ log m) bits.

Yuchen Zhang (UC Berkeley) Communication Lower Bounds NIPS 2013 14 / 18



Conseguence for Regression Problems

For linear regression and probit regression, any optimal estimator of #
must communicates Q(dm/ log m) bits.

Upper Bound (Z, Duchi, Wainwright, NIPS'12)

Local Estimator Hl —Quantize “‘-~~Y1
—_— \”‘HL_%H
: 1) - YE i 1 m
Local Estimator #, Quantize | = 0=_Y:1Y
...... | ST
. - | . '//.,-"
Local Estimator 6, —Quantize |
imati - RNIA — 81121 — & :
@ Estimation error: E[||# — 8||5] = O (5-). (optimal rate)

@ Communication cost: O(dm log(mn)).
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Multiple Rounds of Communication

@ In each round, messages are generated by local data and old messages of
previous rounds.

@ Qutput a message-based estimator.

I

_~Machine 1 F\\

X R
. . N - .'-‘________ \ — -
Vil X2 __=Machine 2F——_ ™ ! Output Estimator:
Besinsnae| e ' ™ Fusion Center— s
| Distribution P | P | (messages)
i \ .-—.
‘.Xm ...... J-/
\ s
S v Send Message
S 74 ;
SMachine m } Eree Broadc
| £TeS Droadcast
g
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Multiple Rounds of Communication

@ In each round, messages are generated by local data and old messages of
previous rounds.

@ Qutput a message-based estimator.

i
# Machine 1 r\
XIF,» ’,-‘ ’ﬂ \;

\\;\
| e £ e = ?—‘-___ 2 L"'\ =
) — Ji/zJif\[&Chmﬂ’ 2 ——— N Output Estimator:
e S —™ Fusion Center— e
| Distribution P | - (messages)
i \\. ‘_.J-
.__\ _Xm ...... /
N __/,/' Send Message
N L =l
\“;Ma::hiu{' m F e
il

@ Statistical accuracy: E[I]@ — 012

@ Communication cost: ) Length(message)

Yuchen Zhang (UC Berkeley) Communication Lower Bounds NIPS 2013
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Multiple Rounds of Communication: Lower Bound

Theorem

For {Gaussian location model, linear regression, probit regression} of
dimension d = 1, any optimal estimator of # must communicates Q(m)
bits.

Remark:
@ Interactivity doesn’t help (communication cost linear in m).

@ Open: generalization to d > 17

Yuchen Zhang (UC Berkeley) Communication Lower Bounds NIPS 2013 16 / 18



Proof ldeas

@ Fix a communication budget B > Length(messages).

Yuchen Zhang (UC Berksley) Communication Lower Bounds NIPS 2013 17 / 18



Proof ldeas

@ Fix 2 communication budget B > Length(messages).
@ Data processing inequality:

[(parameter. messages) < [(parameter.data) -/(data. messages)

L " . o

message independent <B

parameter — data — messages

=
-

LN

© Lower bound E 16 — 8121 by the bound for /{parameter. messa
i 2| DY P

09

Yuchen 7hang (UC Berkeley) Communication Lower Bounds NIPS 2013 17
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Conclusion

Characterize trade-off between communication and accuracy:

@ Single-round communication: Gaussian location model, linear
regression, probit regression.

@ Interactive communication: same problem set, d = 1.

Yuchen 7hang (UC Berkeley) Communication Lower Bounds NIPS 2013 18 / 18



Conclusion

Characterize trade-off between communication and accuracy:

@ Single-round communication: Gaussian location model, linear
regression, probit regression.

@ Interactive communication: same problem set, d = 1.

Future Works:
@ Generalize the result to other statistical estimation problems.

@ Tight lower bound for interactive communication in arbitrary
dimension.
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Proof ldeas

@ Fix a communication budget B > Length(messages).
@ Data processing inequality:

[(parameter. messages) < [(parameter.data) -/(data. messages)

message independent <B

parameter — data — messages

© Lower bound E[HHA — 6]|3] by the bound for /{parameter. messages).

g

For d-dimension problem, a stronger inequality:

|(parameter. data
[(parameter. messages) < (P )

- d

- /{data. messages)
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