Microsoft Research

Each year Microsoft Research hosts hundreds of influential speakers from around the world including leading scientists, renowned experts in technology, book authors, and leading academics, and makes videos of these lectures freely available. 2013 © Microsoft Corporation. All rights reserved.

NIPS Thanks Its Sponsors

PDT PARTNERS

Coursera

The Online Revolution: Education for Everyone

Daphne Koller Stanford University & Coursera

100,000

Vassive

O pen

nline 🔘

Course

数据结构与算法 Data Structures and Algorithms

Peking University, Oct 20th

Common Core in Action: Math Formative Assessment

New Teacher Center, Oct 21st

Introduction to Programming for Musicians and Digital Artists

California Institute of the Arts, Oct 21st

Mathematical Biostatistics Boot Camp 1 Johns Hopkins University, Nov 18th

Drugs and the Brain
California Institute of Technology, Nov 2nd

The Power of Markets University of Rochester, Nov 4th

NUMBER OF COURSES AVAILABLE 2 532 Oct. 2011 Oct. 2013

TOTAL COURSE

RUTGERS

(A)

EMORY

UCSanDiego

The Humanities, Sciences, Engineering, Business,

The Humanities, Sciences, Engineering, Business,

Analytic Combinatorics, Part I

Robert Sedgewick

Analytic

Combinatorics

The Humanities, Sciences, Engineering, Business,

February 2013 5 weeks long

INIVERSITY OF MARYLAND, COLLEGE PARK

The Humanities, Sciences, Engineering, Business,

The Humanities, Sciences, Engineering, Business,

coursera makes studying easier for me. I could sit at home and learn ke I'm at school, no distractions just me, my head phones and my looks. ... I could earn certificates ... without spending a dime to get to my local school. It helps me a lot since my mom is in the hospital and inancially, I cannot afford to attend school. (Amanda, Dominica)

was devastated as I had left my job and was finding out new directions life. I wanted to go back to academics and could not find a way to do o. One of my friend recommended Coursera and it was like a new life me. I was thrilled to see so many courses and so many ways of earning. Thanks to Coursera, I got admission into one of the premier

chools in my country and I could continue my academics. (Aarti, India)

took the class on Experimental Genome Science... The course was ery, very challenging, I had to do some of the coursework during lunch twork ... There's a different kind of commitment needed in taking nline courses. There is a stronger sense of personal integrity required or it... I got into an interview for a job I really desire, and I mentioned nat I was taking the Experimental Genome Science course. Now, I have

new job evaluating genomic research proposals. Funny how that

orks. (Jose, Philippines)

Two years ago I felt incredibly miserable. I am coming from a traditional family - so I married young and all my life I was either pregnant, breastfeeding or both.

I knew that I am talented, but all I had in life was cleaning, feeding, cleaning, feeding, working part time... I wanted very much to study like my classmates ... but it was very hard to find time. I started and left, started and left. I was deeply depressed. There was a moment ... when I tried to kill myself. But we humans are very tenacious of life and I survived.

At that time I found Coursera. My first course called the "game theory" expelled the depression and the desire to die once and forever. I feel happy and I enjoy my life and my family much more. In the last two years I have taken about 40 courses (I am addicted) ... Coursera breathes life into me. It gave me hope. I know that when my kids will grow up (in 10-15 years) I will leave everything and go to Oxford. I dream about it...

As Charles Dickens once said: "Suffering has been stronger than all other teaching I have been bent and broken, but - I hope - into a better shape."

(Anonymous)

grew a lot from answering the longer quizzes and wrestling with he complex essay grading rubrics... you are not only allowing utistic people to learn, but actually diminishing the severity of the liness itself. (Daniel Bergmann, USA)

The Student Experience

Timeline

Timeline

Timeline

Real Course

A Beginner's Guide to Irrational Behavior

o Lectures

iding Assignments

cussion Fora

zzes

ting Assignment

gout

k Here

ut the Course

ut Us

In-video quizzes

introdu

Multi-0

Spatia

Probab

Decisio

Value o

Thinki

Thinkin

Ration

Behavi

Rule B

When

Categ

Tippin

Econo

Divers

Press H for keyboard « Previous shortcuts

Base Rate Bias

Okay, so we've looked at these four things. Prospect theory, hyperbolic

09:30112:49 🚾 📢 💢

A Beginner's Guide to Irrational Behavior

o Lectures

ding Assignments

cussion Fora

zzes

ting Assignment

gout

k Here

ut the Course

ut Us

In-video quizzes

Aultiple choice

Short answer (regular expression)

Who discovered the theory of general relativity?

Computer programs

Math expressions

Question 1

What is the derivative of $\frac{\sin(x)}{x}$ w.r.t. x?

Preview

(x*cos(x) - sin(x)) / x^2

Your submission is equivalent to: $\frac{x \cos(x) - \sin(x)}{x^2}$

Autograded Homeworks and Exercises

Introductory Physics I with Laboratory by Dr. Michael F. Schatz

Online Labs

Introductory Physics I with Laboratory by Dr. Michael F. Schatz

Online Labs

Online Labs

An Introduction to Interactive Programming in Python

by Joe Warren, John Greiner, Stephen Wong, Scott Rixner RICF

Share and run code in the browser

Coursera App Platform

Third-party integration

-course Data Dump

w the Syllabus

h Video miniLectures

Quizzes

at Assessments & ements of Completion

se complete the Survey

ground & elementary materials

iniLectures as Static

ussion Forums

se Staff

-

Feedback - Quiz on miniLectures 1-10

You submitted this quiz on Sun 3 Nov 2013 12:35 PM PST (UTC -0800). You got a score of 3.60 out of 23.00. However, you will not get credit for it, since it was submitted past the deadline.

Quiz 1 treats material in Week 1, miniLectures 1 through 10.

Question 1

1. A newly synthesized drug called numb3rcaine contains an amine group, an aromatic group, a carbonyl group, and an ester linkage. Which of these moieties would be expected to form a charge-charge (or coulombic or ionic or cation-pi) interaction with the receptor?

Instant feedback

Art and Inquiry: Museum Teaching Strategies For Your Classroom

by Lisa Mazzola

Your Final Project for this course is to take the concepts we have explored each week and create a resource that you can incorporate into your teaching. The project outline below has been structured to allow you to tailor the content to the context in which you teach so that it can be most useful. The goal of this final project assignment is to give you an opportunity to practice and be creative with the concepts from the class in a forum where you can share ideas and get feedback from your peers. The peer assessment process will also give you the opportunity to see the ideas that others come up with. Be creative! This is your chance to apply the course concepts to real-world situations

Your assignment is to select an artwork that you would like to use as the starting point for an inquiry based lesson in your classroom.

Format: Please provide the following information in the order that it is presented below:

- 1. Subject Area
- 2. Intended grade level range
- 3. Artwork Selection (please use the "Upload an Image" button or insert a link to the image)
- 4. Artwork Title
- 5. Artist
- 6. Date
- 7. Materials

Art and Inquiry: Museum Teaching Strategies For Your Classroom

by Lisa Mazzola

Your Final Project for this course is to take the concepts we have explored each week and create a resource that you can incorporate into your teaching. The project outline below has been structured to allow you to tailor the content to the context in which you teach so that it can be most useful. The goal of this final project assignment is to give you an opportunity to practice and be creative with the concepts from the class in a forum where you can share ideas and get feedback from your peers. The peer assessment process will also give you the opportunity to see the ideas that others come up with. Be creative! This is your chance to apply the course concepts to real-world situations

Your assignment is to select an artwork that you would like to use as the starting point for an inquiry based lesson in your classroom.

Format: Please provide the following information in the order that it is presented below:

- 1. Subject Area
- 2. Intended grade level range
- 3. Artwork Selection (please use the "Upload an Image" button or insert a link to the image)
- 4. Artwork Title
- 5. Artist
- 6. Date
- Materials

Evaluation/feedback on the above work

Does the activity relate to the artwork?

Are the instructions/prompts clear?

Is the activity developmentally appropriate?

Peer Grading

Mitch Duneier

Peer Grading

Mitch Duneier Princeton

Analysis by: Matthew Salganik & Mitch Duneier Princeton University Sociology Dept.

Peer Grading

LaPtabel laptop table

Neo-WD space-efficient workdesk

Ramaswamy Venkatachalam Gujarat, India

Aranzazu Hurtado Ruiz Madrid, Spain

Paul Mendoza Manila, Philippines

From Knowledge to Action

Synapses, Neurons and Brains

by Idan Segev,

Forums / Get Help Here / Course Material Help

Information storage

this tonic or is someth each one and tes

Community

Synapses, Neurons and Brains

by Idan Segev

Synapses, Neurons and Brains Students Map

Tag yourself in our map here: http://goo.gl/macs/XaCW0

Home

Video Lectures

Quizzes

Discussion Forums

Course Information

Course Staff

Students Map

Surveys

Final Exam

Course Wiki

Join a Meetup 😅

Map Sateritie Terrain

Map Sateritie Terrain

ANTARCTICA

Note that we update this map every week, so new tags won't appear immediately in this page

● Instructor Help Articles
 ● I18N Editor

Edit Page

Global community

2982 Coursera communities

Global Network of Learning Communities

International New Hork Simes

Education

WORLD U.S. N.Y. / REGION BUSINESS TECHNOLOGY SCIENCE HEALTH SPORTS OPINION
POLITICS EDUCATION TEXAS

U.S. Plans Global Network of Free Online Courses

y TAMAR LEWIN

Published: October 31, 2013 \$\forall 24 Comments

Coursera, a California-based venture that has enrolled five million students in its free online courses, announced on Thursday a partnership with the United States government to create "learning hubs" around the world where students can go to get Internet access to free courses supplemented by weekly in-person class discussions with local teachers or facilitators.

Internet access

Group learning

uctors: Rob DeSalle, David Randle

tion of course: 4 weeks

commitment: 5-8 hours/week

rse Description:

AMNH course Genetics and Society: A Course for Educators explores the social, legal and ethical issues of modern-day genetics. Informed by acently released Next Generation Science Standards, the course provides an overview of recent genetic discoveries and molecular lab niques. Participants will acquire an understanding of the science and technology behind breakthroughs such as therapeutic cloning and the sencing of the human genome. You will also have the opportunity to discuss and debate issues surrounding hot-button topics in genetics: If it is

Signature Track

Data & Learning

Self-Induced Mastery

Do, Chen Brandman, & Koller

Mastery Improves Outcomes

Mastery Improves Outcomes

Mastery Improves Outcomes

Hourly retention High group

Hourly retention Low group

Koller, Ng, Do & Chen

Wrong student answers

New Window into Human Learning

College is a place where a professor's lecture notes go straight to the students' lecture notes,

—Edwin Emery Slosson

College is a place where a professor's lecture notes go straight to the students' lecture notes, without passing through the brains of either.

—Edwin Emery Slosson

High-qua

High-quality online content Produced locally or adopted

High-quality online content Produced locally or adopted

Active learning, problem solving

High-quality online content Produced locally or adopted

- · Active learning, problem solving
- Personal attention to students

Scott Rixner and Joe Warren, Rice:

I will never, ever, ever, teach a class any other way as far as I can ell... This is so much better- I had so much more fun teaching and the students learned so much more, I will never get up here and lecture. I ust don't see the point anymore. I can do better this way."

Adrienne Williams, UCI:

This was more fun to teach than a traditional course...students were awake, asking questions, and much more engaged."

Cristin Sainani, Stanford:

"As the instructor, I definitely preferred engaging in interactive discussions and exercises with the students rather than lecturing at hem...my lectures used to take up nearly all the class time and I'd be ushing just to get through them."

On-campus instruction with Coursera

Fall 2011: Traditional Spring 2012: Blended

Flipped Classroom Results (not Coursera)

Where Next?

MOOCs: The Blue Ocean Strategy*

—Thomas Friedman

May 15, 2012 · New York Times

Big breakthroughs happen when what is suddenly possible meets what is desperately necessary.

—Thomas Friedman

May 15, 2012 · New York Times

Wanted: 1,500 universities; apply here

Over the next six years, India needs to create another 1,500 universities... "the low penetration of high-quality education and the growing demand for educated workers in a fast developing service-led economy" offers huge potential to develop the education market. (James Lamont, 1/30/2009)

Wanted: 1,500 universities; apply here

Over the next six years, India needs to create another 1,500 universities... "the low penetration of high-quality education and the growing demand for educated workers in a fast developing service-led economy" offers huge potential to develop the education market. (James Lamont, 1/30/2009)

... even the most prestigious public institutions, including the IITs, are struggling to fill top faculty positions and teacher student ratios are deteriorating. (Yojana Sharma, 3/2/2011)

Desperately Necessary

Suddenly Possible

NIPS Thanks Its Sponsors

PDT PARTNERS

Optimizing Instructional Policies

Robert Lindsey, Michael Mozer, William Huggins
Department of Computer Science,
Institute of Cognitive Science

University of Colorado Boulder Harold Pashler
Department of Psychology

Optimizing Instructional Policies

the state of the s

Robert Lindsey, Michael Mozer, William Huggins
Department of Computer Science,
Institute of Cognitive Science
University of Colorado, Boulder

Harold Pashler
Department of Psychology
University of California, San Diego

Optimizing Instructional Policies

Robert Lindsey, Michael Mozer, William Huggins
Department of Computer Science,
Institute of Cognitive Science
University of Colorado, Boulder

Harold Pashler
Department of Psychology
University of California, San Diego

An Illustrative Learning Problem

Each face once 2 seconds per face

Each face once 2 seconds per face

Each face once 2 seconds per face

Each face once 2 seconds per face

Each face once 2 seconds per face

Each face once 2 seconds per face

Each face once 2 seconds per face

Each face once 2 seconds per face

Each face once 2 seconds per face

Is it better to study

Each face once 2 seconds per face Each face twice I second per face

Is it better to study

Each face once 2 seconds per face Each face twice I second per face

Finding The Better Training Policy

Conduct an experiment where

- half the audience studies at 1s / face
- half at 2s / face

Finding The Better Training Policy

Conduct an experiment where

- half the audience studies at 1s / face
- half at 2s / face

Test everyone's memory and look for a statistically reliable advantage

Finding The Best Training Policy

Continuum of potential training policies

Finding The Best Training Policy

Continuum of potential training policies

Want to identify the optimum

Finding The Best Training Policy

Continuum of potential training policies

Want to identify the optimum

Treat the search as function optimization

Given data from individuals trained at various points in policy space

Given data from individuals trained at various points in policy space

Approximate the performance function with Gaussian process regression

Given data from individuals trained at various points in policy space

Approximate the performance function with Gaussian process regression

Given data from individuals trained at various points in policy space

Approximate the performance function with Gaussian process regression

Given data from individuals trained at various points in policy space

Approximate the performance function with Gaussian process regression

Select promising policy to evaluate next via upper confidence bound heuristic

Given data from individuals trained at various points in policy space

Approximate the performance function with Gaussian process regression

Select promising policy to evaluate next via upper confidence bound heuristic

Draw from GP represents latent population-wide effectiveness of training policies

Draw from GP represents latent population-wide effectiveness of training policies

Chance-corrected beta-binomial observation model

Population effectiveness

$$f(\mathbf{x}) \sim \mathcal{GP}(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}'))$$

Population probability correct

$$c(\mathbf{x}) \triangleq [1 + \exp(-f(\mathbf{x}))]^{-1}$$

Draw from GP represents latent population-wide effectiveness of training policies

Chance-corrected beta-binomial observation model

Population effectiveness

$$f(\mathbf{x}) \sim \mathcal{GP}(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}'))$$

Population probability correct

$$c(\mathbf{x}) \triangleq [1 + \exp(-f(\mathbf{x}))]^{-1}$$

Individual's probability correct

$$\mu_i \mid c(\mathbf{x}) \sim \text{Beta}(\alpha, \alpha(1 - c(\mathbf{x}))/c(\mathbf{x}))$$

Draw from GP represents latent population-wide effectiveness of training policies

Chance-corrected beta-binomial observation model

Population effectiveness

$$f(\mathbf{x}) \sim \mathcal{GP}(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}'))$$

Population probability correct

$$c(\mathbf{x}) \triangleq [1 + \exp(-f(\mathbf{x}))]^{-1}$$

Individual's probability correct

$$\mu_i \mid c(\mathbf{x}) \sim \text{Beta}(\alpha, \alpha(1 - c(\mathbf{x}))/c(\mathbf{x}))$$

Individual's exam score

$$s_i \mid \mu_i \sim \text{Binomial}(g + (1 - g)\mu_i; n)$$

Associate faces with the name of their favorite sports team

Jets or **Sharks**

Six training faces, 30 seconds of training

Each face shown for duration d ms (each face shown 5000/d times)

Sharks Fan

Associate faces with the name of their favorite sports team

Jets or **Sharks**

Six training faces, 30 seconds of training

Each face shown for duration d ms (each face shown 5000/d times)

Immediate test following training

Sharks Fan or jets Fan?

What is the optimal presentation duration?

What is the optimal presentation duration?

What is the optimal presentation duration?

More presentations are better (with diminishing returns)

More time to process is better (with diminishing returns)

Participants are told they are learning the Martian word "GLOPNOR"

The Martians can only teach through examples

"GLOPNOR" = graspability

Ease of picking up & manipulating object with one hand

(Salmon, McMullen, & Filliter, 2010)

Participants must learn the category boundary from exemplars

Fading

Fading

Fading

Fading

Fading

Blocking: + + + - - -

Interleaving: + - + - + -

Experiment 2

Training

25 trial sequence generated by chosen policy

Experiment 2

Training

25 trial sequence generated by chosen policy

Testing

- 24 test trials, independent of policy
- No feedback

Our Contribution

Alternative to traditional A-B testing

Allows us to efficiently search over a continuum of alternatives to discover an optimum.

Our Contribution

Alternative to traditional A-B testing

Allows us to efficiently search over a continuum of alternatives to discover an optimum.

Used to optimize instructional policies

- · presentation duration
- fading
- blocking

Extensions

Individualized policies

Extensions

- Individualized policies
- · Discrete policy spaces

Extensions

- Individualized policies
- Discrete policy spaces
- Higher-dimensional policy spaces

 Maximizing charitable donations via anchoring manipulation

Do	nation amount
	\$50
	5100
	_ \$500
	\$1000
	other:

- Maximizing charitable donations via anchoring manipulation
- Improving discriminability for the visually impaired via image transformations

Satgunam et al. (2012

- Maximizing charitable donations via anchoring manipulation
- Improving discriminability for the visually impaired via image transformations
- Optimizing web page design
 - · e.g., color combinations

Satgunam et al. (2012

NIPS Thanks Its Sponsors

PDT PARTNERS

