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100 Reviewer Awards

“ Up to 100 Reviewer Awards are given to reviewers who wrote
exceptionally careful, thorough and useful reviews. While the work of all
reviewers is essential to the conference, these award winning reviewers
are to be especially thanked for the quality of their reviews”
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Reviews and Author Rebuttals
are now online
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Understanding Dropout

P. Baldi and P. Sadowski
University of California, Irvine




Dropout Training

output layer

hidden layer
(feature detectors)

input layer



Questions

Can connections be deleted instead of units?
Can it be applied to all the layers?

Can it be used with other values of p?

What is the optimal p?

What kind of averaging is dropout
implementing?

What kind of regularization is associated with
dropout?

What are its generalization properties
Why is it convergent?



Dropout: Linear Networks

* Dropout on units

h - hlsl @l - 0 _ 7.
St=2% " whsst with S9=1I,
I<h j

« Dropout on connections

St=Y » ojwiS; with S =1,

F

I<h 7



Dropout: Linear Networks

= » wplsiS: with S =

[<h
h hi ! l
S)_> > w;;ip; E(S;) for h >0
I<h 7}
Probabilistic framework allows easy computation of all
expectations.

Probabilistic framework allows easy computation of all
variances and covariances:

Ei k " \{i g - - F \‘T T Z E ,-p_',.;..l ;r"-r_' — Z Z S Z ra'f;" u*il' E} r;-:l"{:'l_.. JE| ""J "JP

Backpercolation.



Dropout: Non-Linear
Networks

o Stochastic Network:

O =al(SM) =o(d> > wlsOl) with 09 =1I;
I<h 3

o Deterministic Network:

Wi =oU) =0o() Y wipiW)) with W] =1,
I<h 7

Is the deterministic network computing the
ensemble average?



Different Averages

Real numbers: 0<Ohs..... On <1
Complements: 0<1—-0;..... 1 —Om <1
Distribution: P,.....P,, with Z P =1

E=) PO; and EE=1-E=Y) PF(1-0;)

G=]]0 and G =]J(1-0;)"

G

NWGM =
G+ G’




Dropout: Non-Linear Networks

1
1+ ce—AS

[Iy o(S(NV))PAN)
[Iv o (SIN)PN) + [T (1 — o(S(N)))PAV)

D= 5)=

NWGM(O(N)) =

- 1 1 |

NWGM(O(N)) = = = = o(E(S)

- o ) 4 =AY o PIN)S(N) Shel S
]‘_II.\ crbti"-.}J)P'xj 1+ce Sl

NWGM(o(S)) =o(E(S))




Functional Class

Dropout seems to rely on the fundamental property of the logistic sigmoidal function NWGM (o) =
o( E). Thus it is natural to wonder what is the class of functions f satisfying this property. Here we show
that the class of functions f defined on the real line with range in [0, 1] and satisfving

G
G+G

(f) = f(E) (59)

for any set of points and any distribution, consists exactly of the union of all constant functions f(r) = K
with 0 < K < 1 and all logistic functions f(x) = 1/(1 + ce~™*). As a reminder. G denotes the
geometric mean and G’ denotes the geometric mean of the complements. Note also that all the constant
functions with f(x) = K with 0 < K < 1 can also be viewed as logistic functions by taking A = U and
e—{1-— K)/K (K = 0 is a limiting case corresponding to ¢ — ).

f(u)Pf(v)' P - .
FPF 7+ (1 — f@)Pa = fy)ie w1 =p)




Dropout: Non-Linear Networks

1
1+ ce—AS

O =g{ S} =

- - H\ F’l\}
A (mnf’m+n z—g S(N)))PW)

NWGM(OWN)) = —r = = (E(S)
l—II\ fﬂtﬂ” )Pi\} 1+ ce LN A Y I

NWGM(o(S)) =0c(E(S))




Functional Class

Dropout seems to rely on the fundamental property of the logistic sigmoidal function NWGM (o) =
o( E'). Thus it is natural to wonder what is the class of functions f satisfying this property. Here we show
that the class of functions [ defined on the real line with range in [0, 1] and satisfving

G
G+ G

(f) = F(E) (59)

for any set of points and any distribution, consists exactly of the union of all constant functions f(x) = K
with 0 < K < 1 and all logistic functions f(x) = 1/(1 + ce™*). As a reminder. G denotes the
geometric mean and G’ denotes the geometric mean of the complements. Note also that all the constant
functions with f(x) = K with 0 < K < 1 can also be viewed as logistic functions by taking A = 0 and
e =(1-— K)/K (K = 0 is a limiting case corresponding to ¢ — 20).

fwPf () o N
f('u.)Pf(.y)l—p +(1— f(u))p(l o f('l-‘))l_p — f(;tm ¥ (1 —p)L)




Dropout Recursion

O Sh = of S‘ T whtst OI with O? =

LV
I<h 7

E(OM ~ NWGM(OM)

NWGM(O") = o* [ (Sh)]

=) > wipiE(

I<h 7

1) How good is the approximation of E by the NWGM?
2) How good is the approximation of E by W, i.e. are there
systematic errors and do they accumulate or not?



Known Relationships

G<E and G <FE

1 1 .
Var(O) < E-G < - Var(O) (Cartwright and Fields)
2 max; O; 2 min; O;

If the numbers O; satisfy 0 < O; < 0.5 (consistently low), then

(Ky Fan/

E G Levinson)
— FE!

and theref G < < FE
an ereiore Saio S

€ ¢
G



New Bounds and Estimates

Approach: Expansion around: 0, 1,0.5, or E

G = [I,0F = [1,(05 + &))" = 0.5,(1 + 2¢;)P

lyr—~/P\,. .. 1 . P(B-1), ., .
G:EHZ(”){EQ} :EH[l—P{zEg— = (2¢;)° + R3(e;)

i n=0 ; -

where R3(¢;) 1s the remainder of order three

=N R (261'}3 o 2,
R3(€i) = (3 ) (1+ ug:}:i_Pr = ol€;)

1 9 3 » 1 - ’ y - .
G = E*Z Psf:'—iz Psf;h"—Z Pie;+ole”) = §——E{f?—1 ar(e)+ole”) = E(O)—Var(O)+Ra(e)




New Bounds and Estimates

To a second order approximation, we have

. - = G E-V & 1—E ¥
BV >yl K% : ~~ - AngC — o -
( E and  ( 1 —F and e — ind e =

with the differences

G V(1 —2E) R ¢ V(1 —2E)
= and Y — $
C+G 1 —2V & C+ G 1—2V

where V is the variance V < E(1-EFE)

G V(l-2E) E(1 — EY1 —-2E)
E— —| — < < 2E(1 - E)(1 —2E
E-cro 1 —9V -~ 1-2E(1_E) - 4 |

o
_ 0 20} LZ-sorm A6
= ——
- e
(-1- = LZ-syrtisorelS) _ o
"tl} J'
E zB-& } ? % :
| — — — ~ [ =
Y E+E B N '
T {r ~ 010} =
= -
=
.35}
=7




Dropout Simulations

1) Replicated MNIST classifier of Hinton, et. al. 2012
2) Monte Carlo simulations to estimate statistics.

propagation

softmax output

4 hidden layers,
1200 sigmoid units each,
50% dropout

784 pixel inputs,
20% dropout



Left: before training
Right: after training

Approximations
and bounds are
accurate

Hidden layer 2 Hidden layer 3 Hidden layer 4

Hidden layer 1
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2000} ool - NWGM
Wl Aporoxd - NWIGM|

Expansion
around 0.5:

Hidden Layer 4
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NWGM-E
Left: before training
Right: after training

NWGM is roughly
normal around
the mean

Hidden Layer 2 Hidden Layer 3 Hidden Layer 4

Hidden Layer 1
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Errors Do Not Accumulate

« The NWGMs act like approximately
Gaussian fluctuations around the true

dropout expectations and tend to cancel
out.

» [Note: it is always possible to shave off
one layer in regression or classification.]

I1, 0"
ILOF +IL(1—-007

Error|

k) € Zp,Errm'tO;qﬁ or ErroriNWGM) < E(Error)



Hidden Layer 4

W-E
Left: before training
Right: after training

Hidden Layer 3

Hidden Layer 2

Result:

Approximation error is
small (<0.1), even in
upper layers.

Hidden Layer 1




Higher Order Moments

E(0;0%) = E(O,)E(O}) =~ W[W}

Unconnected, before training

Unconnected, after training

—0.002-0.001 0.000 0.001 0.002 -0.10-0.05 0.00 0.05 0.10
W W, —E(0]O]") W, W, —E(0, 0} )



Dropout Adaptive

Regularization
» Linear Case:

L. o 1, . .
Ep = ;(t—Op)° = ;(t - Zoiwiﬂ:f

1
Egpns = = (fTOE\b :;T—szlif

—1

JEp

au‘r_:—[f—OD)Og de+lL{)I"—+—jle 00 I
OF OEpN : . OEgn S
E(=2) =225 y wil?Vars; = ——2 +w;Var(5:1)
dw; dw; ow;

E=Fpns+ = Z uZIZl aro;




Higher Order Moments

E(0!O") = E(O)E(

Unconnected, before training

—0.002-0.001 0.000 0.001 0Q.002 -0

W W —_E(0! 0*)

Unconnected, after training

Ay . trlvirh
O%) ~ W}W!

.10-0.05 0.00 0.05 0.10
W, W —E(O; O} )



Dropout Adaptive

Regularization
« Linear Case:

1

Ep =

| ) 1 n ‘ ;
(t—0p)” = 5(? -~ Z d;w;I;)?
- i=1

1 > 1 : 7
Epns = 5t — Ogns)” = A — Zpi'ﬂ'ifi)'}

1 —1

9Ep ( c - 9 .9 -
Ou.',- = —{l — OD)OEIE = —t0;1; + uﬂ):[: + g UDJGE{}JLIJ
11
9Ep\ OEmn C ABe o
E(22)=—""+ w; I Vars; = sl w; Var(d;1;)

1 n Yo )
E = EgNns + > E w; I7Varo;
=1




Dropout Adaptive
Regularization
» Non-Linear Case:

JEp . _ npen
0{1_‘,‘_ = —/\{f == OD}C','I,'_ = (IL = G'(Z EL‘JOJIJ}) G;L‘

J

Ep\ _ OE
Bl =2 ENS + A’ (Sens)w;I2V ar(s;)
du*i C)biz

1 =5 pm
E = Egns + 5)\0’(553—'5) Z w; I7Var(6;)
=1




Simulation Results: Sparsity

Distribution of neuron activations:

i
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Simulation Results: Sparsity

Distribution of neuron activations:
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Layer 1
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10th Community Wide Experiment on the .
Critical Assessment of Technigues for Protein Structure Prediction N

RR Analysis
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A. Lusci, G. Pollastri, and P. Baldi.
Deep Architectures and Deep
Leaming in Chemoinformatics:

the Prediciion of Aqueous
Solubility for Drug-Like Molecules.
Joumnal of Chemical Information
and Modeling, 53. 7. 1563-1375,
(2013).




Questions

Can connections be deleted instead of units?
Can it be applied to all the layers?

Can it be used with other values of p?

What is the optimal p?

What kind of averaging is dropout
implementing?

What kind of regularization is associated with
dropout?

What are its generalization properties
Why is it convergent?
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Annealing between distributions
by averaging moments

Roger Grosse

Chris Maddison Ruslan Salakhutdinov



Motivation

* Would you trust an algorithm that hasn’t been validated?

« This is the position we're in for density modeling!



Motivation

* Would you trust an algorithm that hasn't been validated?
* This is the position we're in for density modeling!

* Markov random fields

* Evaluating the likelihood requires estimating the
intractable Z



Motivation

* Many algorithms sample from sequences of distributions

* bridge from tractable pj,i; to intractable Pigt

* e.g annealed importance sampling, path sampling, thermodynamic
integration, tempered transitions, parallel tempering, nested sampling
* Typical choice: geometric averages

1—-8

P3(X) X Pinit (X) Ptgt (X)J

* “Annealing” effect




Annealing paths

» Let P be a family of distributions parameterized by 6
* Annealing path 7 : [0, 1] — P

Pk = P8(53,)

Po = Pinit



Annealing paths

* Let P be a family of distributions parameterized by 6
* Annealing path 7 : 0.1] = P

.j” —_— “ [}h _ ]JT T

Po = Pinit

A more honest cartoon:

phase
l:ran5|t|

Bg =0




Geometric averages can be counterintuitive




Geometric averages can be counterintuitive

Pinit pt:gt

beta = 0.22




Geometric averages can be counterintuitive

\ Pinit Pt:gt '?
|

i'

|

beta = 0.86 ;




Geometric averages can be counterintuitive

RBM trained to MNIST

7 | 2 s 5§ 5
5953 § 8 85
f 13 § 8 8

samples from geometric
target distribution averages

beta = 0.00




Geometric averages can be counterintuitive

RBM trained to MNIST

£/ I ¢ ‘

593 6 1}
{13 ]

beta = 0.99

samples from geometric
target distribution averages




Geometric averages can be counterintuitive

RBM trained to MNIST

» | 2 ¢ |
35S S aln')'
f 13 1\ %

samples from geometric
target distribution averages




Annealed importance sampling

Given:
unnormalized distributions fg,.... K
MCMC transition operators Ty, .. .. Tk

fo = finit €asy to sample from. compute partition function of

. finit

L

w =

> s
=" init

For i =0 R —1




Be careful estimating partition functions!

* AIS gives an unbiased estimate of Z; ¢
mwal ,;:‘7 1 eae
Bl Ztet] = Zt;g;t

« But it gives a biased estimate of log Zi.¢

Ellog Zigt| < log Zig



Be careful estimating partition functions!

» AIS gives an unbiased estimate of Ztgt

E[Zig] = Zigt

L

* But it gives a biased estimate of log Zi+
Ellog Zigt| < log Zig

* Do you have a good model or a bad partition function
estimator?’

_ ; ftgt{x)
overestimate ——» pf;gt(X) - — :
' Zigt < underestimate




Be careful estimating partition functions!

* |s this a problem in practice?

RBM trained on MNIST

380 1
L N
3345- = = ® ®
2 320 | . =
300 1
PETRR o —

10° 10° 10" 10°

# distributions



Be careful estimating partition functions!

* |s this a problem in practice?

RBM trained on MNIST

380 -
360 1 - - e #r F s F 3 ) . 3
- :E\ overestimate likelihocod
N i 2
o = = = by 17.5 nats!
o = |
= 320
300 1
e | I ——
10° 10° 10° 10°

# distributions



Moment averaging

Exponential families

p(x) = hix)exp {n-‘r‘gixl)

Z(n)
Two equivalent representations

* natural parameters 7}

» moments s = E[g(x)

Averaging the natural parameters = geometric averages

nlﬁ) = (1 - 'j)ninit T '3ntgt



Moment averaging

GA path MA path

beta = 0.00 ] beta = 0.00
n(3) = (1 — B)Ninic + .*'37hg,t s(3) = (1 — 3)Sinit + OStgt
Geometric Moment

daverages averages




Moment averaging

GA path

beta =0.13

j

"}'(3} = (1— ‘B)Hiuit + -‘ljntgt

Geometric
averages

MA path

V4

beta = 0.00

S(. j) = (l — -'j)siujt + jstgt

Moment
averages




Moment averaging

GA path MA path

¥ & &

\(®))

beta = 0.61 J beta = 0.00
7(B) = (1 — 8)Minie + BN s(3) = (1 — 5)sinit + IStgt
Geometric Moment

daverages averages




Moment averaging

GA path MA path
beta = 0.88 i beta = 0.04
n(B) =(1— 3)Th;m + .*'57hgt s(8) = (1 — O)Siit + J-)S*tgt
Geometric Moment

averages averages




Moment averaging

GA path

beta = 0.99

7?(‘3) — (1 T ‘j)ninit + -':Ijntgt

Geometric
averages

MA path
== =]
beta =0.14

5(3) = (1 — _-j)silljt T 'j')stgt

Moment
averages




Moment averaging

GA path

¥ 4

beta = 1.00

MA path

i

(B) = (1 — B)Minir + BNgr

Geometric
averages

beta = 0.52

S(j)) = (1 — _-j)sinit T ajstgt

Moment
averages




Moment averaging

GA path

¥

beta = 1.00

ﬁ

]
7

“-'?(."3} =(1-— 3)Uinit + .:'57hgt

Geometric
averages

MA path
P |
w
L N—
|
beta = 0.89

S(j) = (1 - ‘3)Sillit T -ijkstgt

Moment
averages




Moment averaging

* Variational interpretation of GA and MA paths:

(GA . . |
py ) = arg i (1 — 3)DkL(q||pinit) + BDkL(q||Pegt)
(MA) . _
Ps =akg niin (1 — B)DkL(Pinit|lg) + BDkL(Ptet l|q)
GA path MA path

* MA tries to cover all modes of target distribution




Analyzing AlS paths

» Can analyze bias analytically

» assume perfect transitions (MCMC operator returns an exact sample)

K—1
E th)g U_‘] - u:ut T E L lUf._l; f.r—-—l[x IU% ff {}{}
t=10)
K-—1
= log Z E Dk (pi || Pis1)
z—U
bias

» Under perfect transitions, also equivalent to var{w'"’)

* Goal: minimize sum of KL divergences




Analyzing AlS paths

Approach: approximate the bias with a functional

For linear schedules,
K-1 ) _ 1 .1 ‘ ‘
A Z Dk (pillpi+1) h;lr Flv) = 5 / G{j}TGgif}Biﬂdf
= J0

={)

where Gg = cov(Vglog pg(x)) denotes Fisher information

Pa

Related to information geometry

Same functional as for path sampling (Gelman and Meng, 1998)




Optimal schedules

* The cost under the optimal schedule is /(4 J“E..f"l , where

1 | -

0y = / VO(3)TGo(3)0(3)d3
J ()

is the path length on the Riemannian manifold with metric Gg



Optimal schedules

* The cost under the optimal schedule is /(~)* /2, where

a1 r- :
14) = / VO(B)TGo(8)8(3)d3
0

is the path length on the Riemannian manifold with metric G4

» Example: annealing between univariate Gaussians

unit of TN AN T T
Fisher metric OQOOOO{
== C
Wﬁ 5—Mmoment averages
: | ProdBlSw. 9B
Cpina 0%,000000 _0 :
(from Gelman and geometric averages
Meng, | 998)




Optimal schedules

» Number of intermediate distributions needed to anneal
between N (0.1) and N(d.1)

GA, linear schedule O(d? )
GA, optimal schedule O(d*)
MA, linear schedule O(d*)

MA, optimal schedule O((logd )2 )

Optimal path (Gelman and Meng, 1998) O((log d)?)

* MA within a constant factor of the optimal path




Optimal schedules

[\:”:'i I‘:L :r}
i | | | 1 ]
¢ — Y551 0 | ’ re
(10.50) (17,.51) (175.85) (1)5.53)



Optimal schedules

Ko =4 Ki=9 Ko=23
: i .
* 4+[ l i i ll + I : +
(M- S0) (17,.51) “?'3'5‘_‘] (13.83)

* Optimal piecewise linear schedule

-

Kj x \/ 41 T )T{-S.;+l — Sj)

« Caveat: this assumes perfect transitions, and mixing effects are
significant!




Experiments

Multivariate Gaussians

Gibbs 1 Transitions

Perfect Transitions

10 -
O T T X FFTTF -1-1-—:1-;—1'-'!—!-11-
= o=
-10 - = =
k]
N 20 - a h 4
3 _30 - - #
—40 13 8 = = GA lin. = = GA lin.
=50 1 A A MA lin. A A MA lin.
—60 4= .
10° 10° 10° 10° 10° 10°

# distributions

# distributions



Experiments

restricted Boltzmann machines

mdden varnables

/A Bipariite j’(V h] = exp (VTWh + VTC —~ th)

i Structura

natural parameters: W.c.b

- - -

moments: E[vh’]. E[v], E[h]

/¥ - -
/:,magn_ visibie vanables




Experiments

restricted Boltzmann machines

dden varables

Y Sipartie f(v.h) =exp (VTWh +vic+h'b)

i, Structura

natural parameters: W.c.b

moments: [E[vh’]. E[v]. E[h]

image visibie vanablas

* Moment averaging:

solve for natural parameters estimate moments
.

-

E[vhT]z = (1 — B)E[vhT |init + SE[vhT |iat
* Approximate with persistent contrastive divergence

* Solve for a few 3 values, interpolate with GA




Experiments

restricted Boltzmann machines

20 hidden units, trained on MNIST with PCD

Gibbs 1 Transitions Perfect Transitions
180 1+ _
1?3-;—1—1:—'—i—t—: 5 * = = s s =
176 4- »
N 174 a
=172 4 -
170 A . .
168 1 = = GA lin. = = GAlin.
- - -
166 + A A MASlin. A A MASIin.
. 5 T ¥ T
10° 10° 10* 10° 10° 10° 10° 10°

# distributions # distributions



Experiments

restricted Boltzmann machines

500 hidden units, trained on MNIST

CDl CD25 PCD
380 ]
4520 o - 430
4515 - T
360 i e ol _ 3z B a A
| 451.0 I g =2 BN 418 s K * W =
= M 4 T a N
N:n 340 s & © o 450.5 s N 416 = =
& - B g 4500 @ _ S
— 320 T 4495 Taad . =
a - : E W =
300 4490 ¥ = 8 GA ln. - |5
448.5 - A a MAS lin.
P11t I, —— 448.0 ProR————rrane - 410 -
10° 10° 10* 10° 10° 10° 10° 10° 10° 10° 10° 10°

# distributions

# distributions

# distmbutions



Experiments

restricted Boltzmann machines

500 hidden units, trained on MNIST

geometric
averages

beta = 0.00

moment
daverages

- -




Experiments

restricted Boltzmann machines

500 hidden units, trained on MNIST

T [ -
n o, .
I WY

beta =1 .00 beta = 0.15

- 5w

3 $
N
1 0

geometric moment
averages averages




Experiments

restricted Boltzmann machines

500 hidden units, trained on MNIST

T | - ) U &
qu. I} T
i T 75

beta = 1.00 beta = 0.23

1
geometric moment
averages averages




Experiments

restricted Boltzmann machines

500 hidden units, trained on MNIST

<z [ - !
i B B {
-\ 35 :

beta = 1 .00

geometric
averages

moment
averages




Experiments

restricted Boltzmann machines

500 hidden units, trained on MNIST

7 | - 0N %
i e I o4
-\ 5 ;6

beta = 1.00

geometric
averages

moment
averages




Conclusions

* The choice of path is a key design decision!

* Contributions
» theoretical framework for analyzing annealing paths
» novel path based on averaging moments

» effective performance at estimating partition functions of RBMs

* Potentially relevant to any algorithm based on annealing paths

» e.g. AlS, path sampling, thermodynamic integration, tempered transitions, parallel
tempering, nested sampling, sequential Monte Carlo



Conclusions

The choice of path is a key design decision!

Contributions
» theoretical framework for analyzing annealing paths
» novel path based on averaging moments

» effective performance at estimating partition functions of RBMs

Potentially relevant to any algorithm based on annealing paths

» e.g. AlS, path sampling, thermodynamic integration, tempered transitions, paraliel
tempering, nested sampling, sequential Monte Carlo

Poster Fri |3
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Dirichlet process mixture inconsistency
for the number of components

Jeffrey W. Miller

and
Matthew T. Harrison

Brown University
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DPs are often used to infer the number of groups

Population structure Exchange rate modeling
Ctranto & Gallo (2002

Leachse & Fugta {2010

Heterotachy in phylogenetic trees
Lartilot & Phiippe (2004)

. . : L
.- i_
e : fhou et al. (2010)
e = - e .~k —~
Hueisenbeck & Richarts et & (2009) = = - ! /(\

b

Andoifatio (2007
: i - A\

Chen=tal (2009)
Gene expression profiling
Mecvedowc & Shaganesan (2007

Network commuribes

Baskernlle st al (20
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The DPM is great as a flexible prior on densities . ..




The DPM is great as a flexible prior on densities . ..

...what about for estimating the number of groups?




Finite mixture model

. T ) ~ Dirichlet(a

By oo O o H

k

X1, Xn S fl2) = mipe,()

—1




Dirichlet process mixture model

, T2, ... ) ~ Stick-breaking process
o

Xn~ f(z) =Y 7ipo,(z)

i—1

Ferguson (1983), Lo (1984), Sethuraman (1994 ),
West, Miiller, and Escobar (1994), MacEachern (1994)




Finite mixture

5 tables (i.e. components)
3 occupied tables

Dirichlet process mixture

f

—_ —_
inl M'} 1_'_-')

m3 ¥

\ ! 6 ".\_ / \ 7 / / ...1'-L_ 4 _,-"J I'-.\ /.f'J
N 4 N N €@ N~
> tables (i.e. components)

4 occupied tables




What if we use a DPM on data from finite mixture?

It is known that in many cases the posterior concentrates at the true density fj,

P(||f — follz, <& | X1:n) ——1 Ve >0,

n—o0

(often at essentially the minimax-optimal rate), for any sufficiently regular fj.
(Contributions by: Ghosal, van der Vaart, Scricciolo, Lijoi, Prunster, Walker, James,
Tokdar, Dunson, Bhattacharya, Wu, Ghosh, Ramamoorthi, Ishwaran, and others.)




What if we use a DPM on data from finite mixture?

It is known that in many cases the posterior concentrates at the true density fj,

P(|f — follz, <&l Xim) —— 1 V>0,
71— 00

(often at essentially the minimax-optimal rate), for any sufficiently regular fj.
(Contributions by: Ghosal, van der Vaart, Scricciolo, Lijoi, Prunster, Walker, James,
Tokdar, Dunson, Bhattacharya, Wu, Ghosh, Ramamoorthi, Ishwaran, and others.)

In fact, the posterior on the mixing distribution concentrates (in Wasserstein
distance) at the true mixing distribution (Nguyen, 2013).




Finite mixture

5 tables (i.e. components)
3 occupied tables

Dirichlet process mixture

—_— —
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> tables (i.e. components)
4 occupied tables




What if we use a DPM on data from finite mixture?

It is known that in many cases the posterior concentrates at the true density fj,

P(f—fﬂ L1<E|Xl‘.ﬂj—___>1v-€>0:

n—oc

(often at essentially the minimax-optimal rate), for any sufficiently regular fj.
(Contributions by: Ghosal, van der Vaart, Scricciolo, Lijoi, Prinster, Walker, James,
Tokdar, Dunson, Bhattacharya, Wu, Ghosh, Ramameoorthi, Ishwaran, and others.}

In fact, the posterior on the mixing distribution concentrates (in Wasserstein
distance) at the true mixing distribution (Nguyen, 2013).

Does the posterior on the number of occupied tables concentrate at the
true number of components? i.e.

7
P(#occupied = kg | X1.,) — 1

n—o0




Qutline

© Empirical evidence

© Theoretical results
© Intuition




Tiny extra clusters often appear in posterior samples.

Empirically, this is well-known (e.g. West, Miiller, and Escobar, 1994).




Bivariate Gaussian mixture with 4 components

True cluster assignments Sample from the posterior




Bivariate Gaussian mixture with 4 components

True density Posterior predictive density




Bivariate Gaussian mixture with 4 components

Posterior on the number of occupied tables
1-

n=>50
200
——n = 500

- . 3 3

] C | i I rC 1
. but they do affect the DOSTErior on tne numober Oor occupiea tables.




Theoretical results




Theorem (M. & Harrison, 2013)

Under mild regularity conditions, if X1, X>,... are i.i.d. from a finite
mixture with kg components, then the DPM posterior on the number of
occupied tables T, satisfies

Iimsap P(T, =ko | X3,..., Xn) <1
T1I—00

with probability 1.

@ This implies inconsistency.
@ We assume the concentration parameter « is fixed.

@ This generalizes to Pitman—Yor process mixtures.
e See Miller & Harrison (2013) arXiv:1309.0024 for details.

Miller & Harrson




This implies inconsistency of Dirichlet process mixtures over:

@ a large class of continuous exponential families, including

» multivariate Gaussian
» Exponential
Gamma
Log-Normal
Weibull with fixed shape

© essentially any discrete family, including

» Poisson

» Geometric
Negative Binomial
Binomial
Multinomial
(and many more)




To be clear: It's fine to use DPMs . ..

© as a flexible prior on densities
(viewing the latent variables as nuisance parameters)

@ or if the data-generating process is well-modeled by a DPM
(and in particular, is not a finite mixture!)




Inturtion




The wrong intuition

It is tempting to think that the prior on the number of occupied tables is
the culprit, since it is diverging as n — oc.

10 15 20
t (number of occupied tables)

However, this is not the fundamental reason why inconsistency occurs.




The right intuition

Given that there are ¢ occupied tables, the conditional distribution of their
sizes ni '

Pny,...,n | Tu=1) o< nyt---n7 I3 n; =n).

CDF of n; given T;, = 2 occupied tables

50000 100000

As n grows, this becomes concentrated in the “corners”. In other words,
the DPM really likes to have one or more tables with very few customers.




The DPM really likes to have one or more tables with very few customers.

This explains the tiny extra clusters, since (it turns out) they do not
significantly reduce the likelihood.




Solutions?

What if we . ..

e put a prior on the concentration parameter?
e ignore tables with very few customers? (busy waiter strategy)

e put a prior on the number of components?
This works in principle (Nobile, 1994), but ...

beware of misspecification.




The DPM posterior on the number of occupied tables should not be used
to estimate the number of components in a finite mixture.

Dirichlet process mixture inconsistency
for the number of components

Jeffrey W. Miller

and
Matthew T. Harrison

Brown University
Division of Applied Mathematics

Poster: Fri37
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Approximate Bayesian Image Interpretation
via Generative Probabilistic Graphics Programs

Vikash K. Mansinghka™'2, Tejas D.Kulkarni'> Yura N.Perov? Joshua B.Tenenbaum'-

'Computer Science &
Artificial Intelligence
Laboratory

2Department of Brain and *Institute of Mathematics
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Vision as Inverse Graphics

Making an image from a scene

' Stage image

Lights g

-
()
{l>
]

Materiai
information aboutobject
properties is encrypied
in the image
Objects

Kersten, NIPS 1998 Tutorial on Computational Vision



“Taking Inverse Graphics Seriously”



“Taking Inverse Graphics Seriously”

Combining bottom-up classifiers, search and 3D geometry

(Gupta, Efros and Hebert 2010) (Hoeim, Efros and Hebert 2006)



“Taking Inverse Graphics Seriously”

Combining bottom-up classifiers, search and 3D geometry

(Gupta, Efros and Hebert 2010)

Learning transforming autoencoders

™ At
o | om
’ \
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B | By | B
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| _ |8 —_—
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PP

Hinton, Krizhevs

and Wang, 2011

(Hoeim, Efros and Hebert 2006)
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Generative Probabilistic Graphics Programming:
Taking Inverse Graphics Literally



Generative Probabilistic Graphics Programming:
Taking Inverse Graphics Literally

= Direct formulations of approximately Bayesian inverse graphics are possible, given:
1. Generative models written as probabilistic graphics programs in Church/Venture
2. Automatic, general-purpose samplers for inference; no custom inference code needed
3. Approximate comparison of rendering and image data: a variation on ABC

4. Bayesian relaxations, to adaptively smooth the energy landscape



Generative Probabilistic Graphics Programming:
Taking Inverse Graphics Literally

* Direct formulations of approximately Bayesian inverse graphics are possible, given:
1. Generative models written as probabilistic graphics programs in Church/Venture
2. Automatic, general-purpose samplers for inference; no custom inference code needed
3. Approximate comparnson of rendering and image data: a variation on ABC

4. Bayesian relaxations. to adaptively smooth the energy landscape

* Empirical demonstrations:
1. 2D: obscured digits + letters

2. 3D: road scenes



Probabilistic Programming with Church and Venture

ASSUME size {uniform O 1)

ASSUME pos_x {uniform 0 1)

ASSUME pos_¥vy {uniform 0 1)

ASSTME rotation x (uniform 0 180)

ASSUME rotation y (uniform 0 1808)

ASSUME rotation z (uniform 0 180) j
]

ASSUME image (render wire cube size pos x ...) :

ASSUME blur bw {gamma 1 1)

ASSUME sigsqg {fgamma 1 1)

ASSUME blurred (gaussian blur image blur bw)

ASSUME data {load image “cube.png”)

OBSERVE (multivariate normal blurred sigsqg) data Markov

Blanket

Probabilistic code in Venture, (Mansinghka, Seisam and Perov, in prep}
a new Turing-compiete platform descended from Church {(Goodman*, Mansinghka*, Roy et al.. 2008)



Generative Probabilistic Graphics Programming:
Taking Inverse Graphics Literally

Stochastic
Scene Generator
\ Approximate
Renderer

l Ir = f18,X)

Data [pmgp({ ~ Sto€hastic 3 pp, 1, X)

Comparison




Generative Probabilistic Graphics Programming:
Taking Inverse Graphics Literally

Stochastic
Scene Generator
X ~ P(X) l S~ P(S)
\ A 1 t T -
Renderer |4 Probabilistic
l Iz =f(5.X) code

Stochastic r

Data [pm—3 Sovsima) — P(Ip|Iz.X)

P(S|Ip) x fP[‘S)P(_X}Jf.;g_x;, (Ir)P(Ip|Ir. X)dX

Automatic, general-purpose samplers for inference:

P(Ip|f(S'.X"). X"YP(S")YP{X")q((S'.X") = (5, X))

yvwa{(S.X) = (8. X)) = min(L : : — —
FERLH ‘ il = T (5. X). X)P(S)P(X)((S.X) = (5. X))

)



GPGP lllustration: Reading Obscured Text

aANobLUE o = 2 o & E 3
DgeehPQa "= '_7_‘— s'ﬁ s
e 184
fos7 181 M
542642
S —— BOB720
5281459
SN - 4 p
mam |(“- DO
bf w3
=
i&8a 7
o 5 £S89 25
ByIMT _
- F B 3
Ll el &
Prjuc E=a wven
e 4&
B2758
o o




GPGP lllustration: Reading Obscured Text

ASSUME is present (mem (lambda (id) (bermoulli 0.5)))

ASSIIME pos x (mem {(lambda (id)} (uniform discrete 0 200}})

ASSUME pos_y (mem (lambda (id) (uniform discrete 0 200)))

ASSUME size x (mem (lambda (id) (uniform discrete 0 100}))

ASSUME size y (mem (lambda (id) (uniform discrete 0 100)))

ASSUME rotation {mem (lambda {id) (uniform continuous -20.0 20.0})))
ASSUME glyph (mem (lambda (id) (uniform discrete 0 35))) // 26 + 10.

ASSTUME blur (mem {lambda (id) (* 7 (beta 1 2))))
ASSUME global blur (* 7 (beta 1 2))

ASSUME data blur (* 7 (beta 1 2))

ASSUME epsilon (gamma 1 1)

ASSUME image (render surfaces max-num-glyphs global blur
(pos_x 1) (pos_y 1) (glyph 1) (size x 1) (size y 1)
(rotation 1) (blur 1) (is present 1)

(pos x 2) (pos_y 2) (glyph 2) (size x 2) (size y 2)
(rotation 2) (blur 2) (is_present 2)

... (is_present 10))

ASSUME data (load image "captcha l.png" data blur)
OBSERVE (incorporate stochastic likelibhood data image epsilon) True

Probabilistic code in Venture, (Mansinghka, Seilsam and Perov, in prep}
a new Turing-complete platform descended from Church {(Goodman®, Mansinghka*, Roy et al., 2008}



GPGP lllustration: Reading Obscured Text

ASSUME is present (mem (lambda (id) (bermoulli 0.5)))

ASSUME pos x (mem {lambda (id) (uniform discrete 0 200}))

ASSUME pos_y (mem {lambda (id) (uniform discrete 0 200)})

ASSUME size x (mem (lambda (id) (uniform discrete 0 100}))

ASSUME size y (mem (lambda (id) (uniform discrete 0 100)))

ASSUME rotation (mem (lambda {id) (uniform continuous -20.0 20.0)))
ASSUME glyph (mem (lambda (id) (uniform discrete 0 35))) // 26 + 10.

Stochastic

ASSUME blur (mem (lambda (id) (* 7 (beta 1 2)))) Scene Generator
ASSUME global blur (* 7 (beta 1 2)) _ .
ASSUME data blur (* 7 (beta 1 2)) X~ PX) l 5~ P(S)
ASSUME epsilon {(gamma 1 1)

\ Approximate
ASSTME image (render surfaces max-num-glyphs global blur Renderer
(pos x 1) (pos_y¥ 1) (glyph 1) (size x 1) (size y 1)
{rotation 1) (blur 1) {J.S_prESEJElt 1) . l Ie = fiS.X)
(pos x 2) (pos vy 2} (glyph 2) (size x 2) (size y 2)

(rotation 2) (blur 2) (is_present 2) y
... (is_present 10)) Data [y se— Stochastic gy P(Ip/1g.X

Comparison

ASSUME data (load image "captcha_l.png" data blur)
OBSERVE (incorporate stochastic likelihood data image epsilon) True

Probabilistic code in Venture, (Mansinghka, Seilsam and Perov, in prep)
a new Turing-compilete platform descended from Church {(Goodman*, Mansinghka*, Roy et al.. 2008)



GPGP lllustration: Reading Obscured Text

ASSUME is present (mem (lambda (id) (bernoulli 0.5)))

ASSUME pos x (mem {(lambda (id) (uniform discrete 0 200)))

ASSUME pos y (mem (lambda (id) (uniform discrete 0 200}))

ASSUME size x (mem (lambda (id) (uniform discrete 0 100)))

ASSUME size y (mem (lambda (id) (uniform discrete 0 100)))

ASSUME rotation (mem (lambda {id) (uniform comtinuous -20.0 20.0)))
ASSTUME glyph (mem (lambda (id) (uniform discrete 0 35))) // 26 + 10.

ASSUME blur (mem (lambda (id) (* 7 (beta 1 2})))
ASSUME global blur (* 7 (beta 1 2))

X~ P(X)

ASSUME data blur (* 7 (beta 1 2)) S~ PrS)
ASSIME epsilon (gamma 1 1)

Approximate
ASSUME image (render surfaces max-num-glyphs global blur : Renderer

(pos x 1) (pos ¥ 1) (glyph 1) (size x 1) (size y 1)
(rotation 1) (blur 1) (is present 1) l Ie = fiS.X)
{pos x 2) (pos_y 2} (glyph 2} (size x 2) (size y 2)

(rotation 2) (blur 2) (is_present 2)

.-- (is_present 10)) Data [, e— Cmﬁn - P(1p/ia. X

ASSUME data (load image "captcha_ l.png" data blur)
OBSERVE (incorporate stochastic likelihood data image epsilon) True

Probabilistic code in Venture, (Mansinghka, Seilsam and Perov, in prep}
a new Turing-complete platform descended from Church (Goodman®, Mansinghka®, Roy et al., 2008}



GPGP Illlustration:
Convergence issues without control variables




GPGP lllustration: Reading Obscured Text

ASSUME is present (mem (lambda (id) (bermoulli 0.5)))

ASSUME pos _x (mem {(lambda (id) (uniform discrete 0 200))})

ASSUME pos y (mem (lambda (id) (uniform discrete 0 200}))

ASSTME size x (mem (lambda (id) (uniform discrete 0 100}))

ASSUME size y (mem (lambda (id) (uniform discrete 0 100)))

ASSUME rotation (mem (lambda {id) (uniform continuous -20.0 20.0)))
ASSUME glyph (mem (lambda (id) {uniform discrete 0 35))) f/ 26 + 10.

Stochastic
ASSUME blur (mem (lambda (id) (* 7 (beta 1 2)))) Scene Generator
ASSUME global blur (* 7 (beta 1 2)) . s
ASSUME data blur (* 7 (beta 1 2)) X~ P(X) l S~ P(S)
ASSIME epsilon (gamma 1 1)

\ Approximate

Renderer

ASSUME image (render surfaces max-num-glyphs global blur
{pos x 1) (pos ¥ 1} (glyph 1} (size x 1) (size y 1)
(rotation 1) (blur 1) (is present 1)

(pos x 2) (pos vy 2) (glyph 2) (size x 2) (size y 2)
(rotation 2) (blur 2) (is_present 2)

... {is_presemnt 10)) Data Ip

I = fiS.X)

Stochastic
Comparison

P(ipig. X

ASSUME data (load image "captcha l.png” data blur)
OBSERVE (incorporate stochastic likelihood data image epsilon) True

Probabilistic code in Venture, (Mansinghka, Seisam and Perov, in prep}
a new Turing-compilete platform descended from Church {(Goodman®, Mansinghka*, Roy et al., 2008}



GPGP Illlustration:
Convergence issues without control variables




GPGP Illlustration:
Improved convergence via Bayesian relaxations




Pixel Difference (L2 Norm)

GPGP lllustration:
Improved convergence via Bayesian relaxations

Without Bayesian relaxation

With Bayesian relaxation



Pixel Difference (L2 Norm)

GPGP lllustration:
Improved convergence via Bayesian relaxations

Blur Kernel

10000 15000

iteration

o |
o 3000 10000 15000 20000

MH transitions

Without Bayesian relaxation

With Bayesian relaxation




GPGP lllustration: Empirical Resulis
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GPGP in 3D: Finding Roads

Scene from KITTI Vision Benchmark Suite:




GPGP in 3D: The probabilistic code

ASSUME road width (uniform discrete 5 8) /
ASSTUME road height (uniform discrete 70 15
ASSUME lane pos x (uniform continuous -1.0
ASSUME lane pos y (uniform continuous -5.0
ASSUME lane pos z (uniform continuous 1.0
ASSUME lane size (uniform continuous 0.10

ASSUME
ASSTME
ASSUME
ASSUME
ASSUME

eps (gamma 1 1)

theta left (list 0.13 ... 0.03)
theta right (list 0.03 0.02)
theta road (list 0.05 ... 0.07)
theta lame (list 0.01 ... 0.21)

ASSTME surfaces (render surfaces lane pos x
road width road height lane size)

ASSUME data (load_ image "frame20l.png")
OBSERVE (incorporate stochastic likelihood

arbitrary units
)
1.0) //uncentered renderer
0.0) //coordinate system
2. Stechastic
35) Scene Generator
ST S~ P(S)
Approximate
Renderer
lane pos y lane pos z l Ir =fiS.X)
Stochastic

Data [ we— = P(In/12.X)

theta left theta right

Comparison

theta road theta lane data surfaces eps) True



GPGP in 3D: The probabilistic code

ASSUME road width {uniform discrete 5 8) //arbitrary units
ASSTUME road height (uniform discrete 70 150)

ASSUME lane pos_x (uniform continuous -1.0 1.0) //uncentered renderer
ASSUME lane pos_y (uniform continuous -5.0 ©0.0) //coordinate system
ASSUME lane pos z {uniform continuous 1.0 3.3) Stechastic
ASSUME lane size {(uniform continuous 0.10 0.35)

Scene Generator
ASSUME eps (gamma 1 1)
ASSUME theta left (list 0.13 ... 0.03) l 5~ PiS)
ASSUME thets right (list 0.03 ... 0.02) ]
ASSUME theta road (list 0.05 ... 0.07) Approximate
ASSUME theta lane (list 0.01 ... 0.21) Renderer

ASSIME surfaces (render surfaces lane pos x lane pos y lane pos z
road width road height lane size)

l In = fiS.X)

ASSUME data (load_ image "frame20l.png")
OBSERVE (incorporate stochastic likelihood theta left theta right
theta road theta lane data surfaces eps) True

Comparison

Data [p=—gp ~ Stochastic 3 pe 1. X



GPGP in 3D: The probabilistic code

ASSUME road width (uniform discrete 5 8) //arbitrary units

ASSTME road height (uniform discrete 70 150)

ASSUME lane pos_x (uniform continuous -1.0 1.0) //uncentered renderer
ASSUME lane pos_y (uniform continuous -5.0 0.0) //coordinate system

ASSUME lane pos z {(uniform continuous 1.0 3.5) Steckaitie
ASSUME lane size {uniform cosntinuous 0.10 0.35) Crome Coneradie
ASSUME eps (gamma 1 1) X~ PrX) S~ P(S
ASSUME theta left (list 0.13 ... 0.03) )

ASSUME theta right (list 0.03 ... 0.02)
ASSUME theta road (list 0.05 ... 0.07)
ASSUME theta lapne (list 0.01 ... 0.21)

Approximate
Renderer

Iz = fiS.X)

ASSUME surfaces (render surfaces lane pos x lane pos_y lane pos _z
road width road height lane size)

Data [pmem—pp ~ Stochastic 3 py 7, X))

ASSUME data (load image "frame20l.png") Comparison
OBSERVE (incorporate stochastic likelihood theta left theta right '
theta road theta lane data surfaces eps) True




GPGP in 3D: The probabilistic code

ASSUME road width (uniform discrete 5 8) //arbitrary units

ASSUME road height (uniform discrete 70 150)

ASSUME lane pos x (uniform continuous -1.0 1.0) //uncentered renderer
ASSUME lane pos y {uniform continuous -5.0 0.0) //coordimate system

ASSUME lane pos z (uniform comtinuous 1.0 3.5) ' Steckiatic
ASSUME lane size (uniform coatinuous 0.10 0.35) Grins Contraine
ASSTUME eps (gamma 1 1) X~ PX) 5~ P(S)
ASSUME theta left (list 0.13 ... 0.03)

ASSUME theta right (list 0.03 ... 0.02)
ASSUME theta road (list 0.05 ... 0.07)
ASSUME theta lane (list 0.01 ... 0.21)

\ Approximate

Renderer

In =fiS.X)

ASSUME surfaces (render surfaces lane pos x lane pos y lane pos z
road width road height lane size)
. . 2 Data Ip
ASSUME data (load image "frameZ0l.png")
OBSERVE (incorporate stochastic likelihood theta left theta right
theta road theta lane data surfaces eps) True

P(Ip/iz.X]



GPGP in 3D: The generative model

3D Scene Prior




GPGP in 3D: The generative model

3D Scene Prior Histogram Appearance Models
Lanes Offroad (left, ri_ght) Road
Hff- )y

P{Ip Igr.€) = H H : >

Quantized Image




GPGP in 3D: Empirical Results

Method Accuracy
Alyetal [1] 68.31%
GPGP (Best Single Appearance) 64.56%

GPGP (Maximum Likelihood over Multiple Appearances} 74.60%



GPGP in 3D: Posterior Uncertainty

Assumptions violated: Assumptions satisfied:
broad posterior narrower posterior




Scaling up by
Integrating Knowledge Engineering and Learning



Scaling up by
Integrating Knowledge Engineering and Learning

* Learn parameterized generative models for appearance and shape:

* -
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(Portifla & Simoncelli, 1999) (Tang & Salakhutdinov, NIPS 2013) Shape programs written in GML: (Havemann, 2005




Scaling up by
Integrating Knowledge Engineering and Learning

* Learn parameterized generative models for appearance and shape:

(Portilla & Simoncelli, 1999) (Tang & Salakhutdinov, NIPS 2013} Shape programs written in GML: (Havemann, 2005

e Learn structured bottom-up inference programs automatically,
from forward executions of the generative probabilistic graphics program:



Conclusion

+ Direct formulations of approximately Bayesian inverse graphics are possible, given:
1. Generative models written as probabilistic graphics programs in Church/Venture
2. Automatic. general-purpose samplers for inference: no custom inference code needed

3. Approximate comparison of rendering and image data: a variation on ABC

4. Bayesian relaxations, to adaptively smooth the energy landscape

* Links:

GPGP: http://probcomp.csail.mit.edu/gpgp

Venture (alpha 0.1.1): hitp.//probcomp.csail.mit.edu/venture
Probabilistic Programming: hitp://probabilistic-programming.org
DARPA PPAML: hitp://ppaml.galois.com

¢ Acknowledgements: Keith Bonawitz. Eric Jonas, Bill Freeman, Seth Teller and Max Siegel
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