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Hippocampus in spatial and
episodic memory

» The hippocampus is involved in the
formation of episodic memory as well as
spatial memory used in navigation.

» Navigation - linkage of spatial locations
» Episodic memory - linkage of events

» Both may depend critically on temporal
sequence encoding



Neural recording device

4-channel microwire electrode

Multiple electrode microdrive array



Spike amplitude clustering




Place Fields on Linear Tracks




Hippocampal Place Cells

cell activity behavior

ongoing




Place Fields on Linear Tracks




Hippocampal Place Cells

cell activity behavior
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Hippocampus online and offline

Theta rhythm Sharp wave/ripples

walk still
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Hippocampal spatial representations are
encoded as sequences during behavior
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Role of Sleep in Memory

« Sleep allows examination of memory
independent of behavior.

« The formation of lasting memories may
involve the communication of
information between brain areas during
sleep.

» Broadly identify two stages of non-REM
sleep -(NREM) and rapid eye
movement sleep (REM).



Experimental design

SLEEP RUN SLEEP
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B slow-wave sleep
REM sleep
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Compressed Run sequences are
expressed in hippocampus during nREM
sleep
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Sequences are re-expressed
during CA1 ripple events

Duration of low
probability sequences

Correlation of low
probability sequences
and ripples

Example of a low
probability sequence
and a ripple event



Are there signatures of memory
reactivation in the neocortex during
hippocampal reactivation

« Simultaneously record in the hippocampus
and primary and secondary visual cortex
during spatial behavior.

* | ook for reactivation in both structures
during sleep.



A

Experimental Design: ¢

PRE (1-2hrs)

—— RUN (20-40mins) — POST (1-2hrs)

1. Intra-maze local cues, no prominent distal cues

2. Well trained animals: alternation task

3. Recording sites: visual cortex {Occl, Occ2) and CAl

4.  Sleep states (SWS, REM, Wake, Int) classified using EMG

and hippocampal EEG



Sequence memory reactivation in hippocampus and visual cortex

i1 and Wilson. Nature Neuwroscience. 200



Reactivation occurs during activity frames correlated with the slow
oscnllatlon
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Can we influence memory reactivation
during sleep?

Sound R

upward frequency sweep

frequency /
time

Sound L

downward frequency sweep

frequency \
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For 2-2.5 hours
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Sound R
control sounds



Behavioral task design

Sound L Sound R

nosepoke

time . ime

reward reward
e ——]
site site

fraquency
e ———

frequancy

S nght I —— = B
2 e - =
= A b =
— | - b =8
E i~ 13.3 Hz
= left \ e =
z " . 3Ctual
= position 4
RcC L C
3UCHOryY CUL | —
P i -
Uit 2 |
’
tme o
[



- P, A lﬂﬂmﬁmﬂ
e ”& R ML T
T S U
: S e w0 B 0.

J AmEE s g
i ,',. ".."..mw'mu’-wﬂ-w
4 ﬁ-"-ﬁh i 2 SRR P DU RS

tma —
100 sec

sound L
sDTLs — -
! L = _
104 '
LA l
(z-score) | :
a
| . |
ml_ T 58w T‘
| L] . L] Ii
- I » . !
L} | '.l
= l b
- 20 y
E l P ' rl ! !
i [ - .a
-
[ TR e |1 . [ ilf"-
Tu', I. i " n. ..-.
i ;
v 3 e B

onlimibod posilion

i 8
r_l_ﬂlmtnllli

| —
- )
e -
'ﬂi:
RN G
2% e
=
= X}
w ™ -
Sms

F



f
auditory cue e =iy

MUA hismiih b o Uil i il

1:... " "'*Hdﬁﬂiﬁﬂlﬂiﬁ
n?,inurz.'.wqmy.'

- il- ﬂ----- - -

- l a i*:f'i-ﬂrh ‘r“é"' :
A T : ] .;

| BNt 7 S i e
i ki TR
tme —
100 sec

ourg L

Do task-related sounds bias the
content of future replay?

Hypothesis:
Sound R- place cells with right-sided

place fields are more active during replay
Sound L- place cells with left-sided
place fields are more active during replay
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Bias observed in individual place cell responses
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Bias is maintained after initial cueing
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Hippocampus online and offline

Theta rhythm Sharp wave/ripples

walk still
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Hippocampal activity during quiet
wakefulness

* During awake behavior, there are
periods of quiet wakefulness that have
EEG that is similar to NREM consisting
of brief bursts of activity modulated by
high frequency “ripple” oscillations.

« |s there structure to the patterns of
multiple single neuron activity during
this state?



What do animals think about when they stop
and eat after running down a track?

STOPPED
AFTER
RUNNING



They think back to where they have just been.

Memory of recent experience replayed in reverse-time order

Stopping
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~ Questions

v Replay in a larger environment?

v Replay associated with reward sites only?

v Replay always begins with cells that have place
fields close to animal’s current location?

v Replay in forward and reverse directions?



Long behavioral sequences on a 10m track
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Reconstruction of extended sequence
replay during quiet wakefulness
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Hipples detectod

Extended replay spans multiple ripple
events
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(M) ® Egstimated position (em)

Single ripple sequences are at same scale
as theta sequences

)
o0
o

2

:

A%
&
|
|
|
|
|
|

3

6.6 mis

)
LFP (MmV)™ Behind/ahead animal (cm)

1501 35ms 7.1 ms |
100 I -50
0.2 |
0.2
I A7AVATATAYAYAVAVAVASVAVEN 0 :
w 0.2 | '
= -0.24 :
4710 47105 4711 -
time (s} D5
=L 1
o
58,
-0.2 0.1 0 0.1 0.2

Time relative to theta peak (s)

Davidsonn Kloosterman and Wilson. Newron. 2009



Learning sequences of actions
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Hippocampal place-cell sequences depict
future paths to remembered goals
Brad E. Pfeiffer & David J. Foster

Nature, 2013




Learning sequences of actions

R - -
g
f
¥ . l\
2
;.:
) |
Temporal credit assignment ~S e ﬂ
Dopamine unit activity couid (= =]
differentially weight the content of )
hippocampal sequences, propagating « |
value information from the rewarded E
location backwards aiong the incoming T ]
trajectory.

Foster and Wilson. Nature 440: 680-683. 2006



Hippocampal place-cell sequences depict
future paths to remembered goals
Brad E. Pfeiffer & David J. Foster

Nature, 2013




Dopamine cell representations

* unexpected reward
« predictors of reward
» errors in the prediction of reward

Reward prediction error
Current reward — Expected reward -

3t

An error signal
to teach target
bramn regions

Schultz. Davan. Montague. Science 1997



VTA Hippocampus co-recordings

Bregma: 4.80 mm Bregma: -5.30mm Bregma: -6.04mm
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Light microscopy Anti-TH Ab



Spatial working memory task

Force Tnals Choice Tnals




Task contingency associated VTA unit activity
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HC ripple bursts modulate DA unit activity

Single unir activity

Multunit acrivity
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Decoding hippocampal SPW-R associated
multiunit bursts with spatial sequence reactivation
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Dopamine unit modulation at hippocampal SPW-R bursts
depends on replay content
replay Non-replay
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Dopamine units preferentially coordinate with replay of
reward site locations on the spatial working memory task
and phase lock to hippocampal theta
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Summary

* DA unit activity increases during trajectories to rewards,
differentially represents correct over error trials, and correlates
with Q-TD prediction error in a spatial task.

» Hippocampal SPW-R bursts are associated with the modulation
of DA units.

» Hippocampal theta phase-locking of DA unit activity correlates
with the degree of SPW-R associated modulation.

» DA coordination with SPW-R bursts depends on replay content:

» Replay of spatial sequences is associated with greater
modulation.

» DA units preferentially reiate to replay of reward iocations.

« SPW-R modulation of DA units is reduced in slow wave sleep.



Overall summary

* Sequence memory can be encoded in the
hippocampus during active behavior.

« Sequence memory is subsequently replayed
during sleep in both the hippocampus and
neocortex.

* The content of reactivated memory during sieep
can be biased by external manipuiation.

« Sequence memory replayed during quiet
wakefulness is associated reward information and
may serve a different role in learning than replay
during sleep.



Wilson Lab present and former

Albert Lee (Janelia Farm) Non-REM replay
Daoyun Ji (Baylor) H-Visual cortex

David Foster (J. Hopkins) Awake replay

Fabian Kloosterman (Leuven) [Extended awake replay
Tom Davidson (Stanford) Extended awake replay
Dan Bendor (UCL) Biased sleep replay

Steve Gomperts (Harvard) VTA and reward



Overall summary

* Sequence memory can be encoded in the
hippocampus during active behavior.

« Sequence memory is subsequently replayed
during sleep in both the hippocampus and
neocortex.

* The content of reactivated memory during sieep
can be biased by external manipulation.

« Sequence memory replayed during quiet
wakefulness is associated reward information and
may serve a different role in learning than replay
during sleep.
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Correlations strike back (again):
the case of associative memory retrieval

Cristina Savin

CBL, University of Cambridge, UK
IST Austria

o

with Peter Dayan and Maté Lengyel
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Synaptic correlations in the cortex




Synaptic correlations in the cortex
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Synaptic correlations in the cortex
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1. Where do synaptic correlations come from ?
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1. Where do synaptic correlations come from ?
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1. Where do synaptic correlations come from ?
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sharing a pre- or post- synaptic partner




1. Where do synaptic correlations come from ?

Iy Lk
oo

u‘,,v W

I;

shared source of variability

: for synapses on the same cell
(t) _
P(W) b4 I_H‘_] I(t) rl‘,f.J
s .
t |
% ¢ &
lt—gj ”'-—ik
synaptic correlations dependencies between synapses

are a natural consequence  sharing a pre- or post- synaptic partner
of synaptic plasticity




2. What do they mean for memory recall?
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2. What do they mean for memory recali?
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intractable
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intractable

Can we improve recall
performance if we take
into account
synaptic correlations?
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intractable
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R e intractable

Can we improve recall
performance if we take
into account
synaptic correlations?
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D ! intractable

P(x|W, %) x P(x)P(x|x)P(W|x)
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neural dynamics

2"d order

Can we improve recall
performance if we take
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synaptic correlations?
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l A memory frontier for complex synapses
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I The synaptic basis for long-term memory storage
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' A gulf between theory and experiment I

What is a synapse from neuron j to neuron i?

B Theorist: W, or J; ~ size of postsynaptic potential



A gulf between theory and experiment

What is a synapse from neuron j to neuron i?

H Theorist: W; or J; ~ size of postsynaptic potential

@ Experimentalist: AMPA, NMDA, CAMKII, MAPK, CREB,
MHC-I, second messengers, membrane protein regulatio

L' intracellular trafficking, new protein synthesis ..........
;J; >
afERynagne

Caba et. al.
Science Signalling 2009




| Memory capacity with scalar analog synapses

Consider the number of associations a neuron J(k)
with N afferent synapses can store.
E(k) ol

o(k) = sgn (J - E(k) - 6)
An online learning rule to store the desired association:
J(k+1) = e J(k) + o(k) E(k)

i.e. 1) Allows analog weights to decay slightly (forget the past inputs)
2) Add in the new association to the weight (learn a new input).

Memory capacity: How far back into the past can synapses reliably
recall previously stored associations?

Answer: If tis O(N) then the past O(N) associations can be recalled.

Problem: This solution relies on individual synapses to reliably
maintain O(N) distinquishable analog states.
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| Memory capacity with scalar analog synapses

Consider the number of associations a neuron J(k)
with N afferent synapses can store.
(k) a(l

o(k) = sgn (J - E(k) -0)
An online learning rule to store the desired association:
J(k+1) = eV J(k) + a(k) (k)

i.e. 1) Allows analog weights to decay slightly (forget the past inputs)
2) Add in the new association to the weight (learn a new input).

Memory capacity: How far back into the past can synapses reliably
recall previously stored associations?

Answer: If tis O(N) then the past O(N) associations can be recalled.

Problem: This solution relies on individual synapses to reliably
maintain O(N) distinquishable analog states.



l Memory capacity with binary synapses

J

What about real synapses which can
take only a finite number of (k)

o(k
distinguishable values for their strength? (k)

For binary synapses each synapse J, = +1 or -1. So you can no longer
add an association to synaptic weights without running into boundaries.

q q

0 oo

J=-1 J=+1 J=-1 J=+1

Potentiation Depression



I Memory capacity with binary synapses

q -
J;=-1 J=+1 J=-1 J=+1
Potentiation Depression

q = prob a synapse changes strength under appropriate conditions
N = number of synapses

Memory Capacity
g =0(1) log N Quickly learn, quickly forget
q = O(N-172) N12 Sluggish to learn, slow to forget

Fusi and Amit 9.



lSynaptic complexity: from scalars to dynamical system:

Experiment Theory

We must expand our theoretical conception of
a synapse from that of an simple scalar value to
an entire (stochastic) dynamical system in its own right.

This yields a large universe of
synaptic models to explore and understand.




[ Framework for synaptic dynamical systems ]

Theoretical approach:

A synapse is an arbitrary stochastic
dynamical system with M internal states

Some internal states correspond to a
strong synapse, others a weak synapse

A candidate potentiation (depression)
event induces an arbitrary stochastic
transition between states.

Potentiation Depression
-2
= ' AN
3 |

&--'L.aﬁ e

;’ "p - .;. -";:::? y ."“‘/‘_‘H\ 1
é.oﬁ' ’ < U Montgomery
-.._...-" < P and Madison

S £ Neuron
Mpot Mdep ) 4 u 2002



l |deal observer measure of memory capacity: SNR l

A continuous stream of memories are
stored (at poisson rate r) in a population

of N synapses with M internal states. _<‘ _<. _¢.
The memory stored at time t=0 demands _¢. _¢‘

that some synapses potentiate, while

others depress, yielding an ideal —c.
synaptic weight vector wideai. _

The storage of future memories after
t=0 changes the weight vector to w(t). Each choice of

An upper bound on the quality of memory N, M, Mpot gnd Mdep
retrieval of any memory readout using

neural activity is given by the SNR curve: yields a different memory

SNR(t) = (Wideal - W(1)) — (Wideal - W(¢)) curve.
v/ Var (Wideal - W(c))

Fusi et. al. 2005, Fusi et. al. 2007, Barrett and van Rossum, 2008




l Two example synaptic molecular networks

Serial Model Cascade Model
Fusi et. al. 200

Leibold and Kempter 2008

10° 10 10" 10° 10°

Time

To elucidate the functional contribution of molecular complexity to
memory, we want to not simply understand individual models, but
understand the space of all possible models within this family.



[Towards a general theory of synaptic complexity ]

How does the structure of a synaptic
dynamical system (MP°t and M¢der)
determine its function, or memory
curve SNR(t)?

What are the fundamental limits of
achievable memory over all possible
choices of synaptic dynamical systems?

ST - What is the structural organization of
.“‘?c-.' synaptic dynamical systems that achiewv:
éo--du-o, these limits?
&y
- What theoretical principles can control
Mot \Mdep combinatorial explosion in the number

of possible models as M increases?



Imposing a theoretical order on synaptic dynamics

As the synaptic population undergoes .
continuous modification, the internal - “»
state stochastically wanders around - ‘--;.";.‘-:,
according to a forgetting process: &y
et

Mforget — fpot * pNpot 4+ fdep * |\jpot
This forgetting process has:

An equilibrium probability distribution of state occupancy: pfc

And a mean first passage time matrix from state i to |: Tij
pot . Z T Starting from state i, the average time it takes
i Py to get to the potentiated states, weighted by their

JEpot equilibrium probability.

Order states from left to right in order
of decreasing 77"



l Topological ordering from first passage times

large; takes a long time to
reach potentiated states

small; takes a short time to
reach potentiated states

pot




l Topological ordering from first passage times
i

large; takes a long time to
reach potentiated states

small; takes a short time to
reach potentiated states

pot




[Optimal synapses have a simple structure in this order

-

Consider optimizing the area under the memory curve:

When states are placed in this order,

(a) (b)

(a) Meet should only go from left to right
(b) M<e? should only go from right to left
(c) We can remove shortcuts in both MP°t and Md9P while
(1) preserving the order
(2) preserving the equilibrium distribution

(3) increasing the area (W)

= The area under the memory curve of any synaptic dynamical system is
bounded by that of a chain with the same equilibrium distribution.

o

Also, we show that the area of a chain cannot exceed O(N'2M) for any choic
of transition rates along the chain.

= The area under the memory curve of any synaptic dynamical system can
never exceed O(N"2M).



l A frontit-:-r beyond whose bourn no curve can cross -

Area bound implies a maximal achievable memory at any finite time given N
synapses with M internal states:

1 Ne—Tt/(M—1)

SNR

10° 10° 10° 10°

Chains with different transition rates come close to the frontier at late times.

Various measures of memory (area, frontier, lifetime) grow linearly with
the number of internal states M, but grow only as the square root of
the number of synapses N.



l The dividends of understanding synaptic complexity

(Under review: cerebellar leaming with complex synapses)

A framework for interpreting
molecular neurobiclogy data

Neurobiology
A theory of
complex synapses
Technology Mathematics
New theorems about
The next generation of perturbations
artificial neural networks? to stochastic processes.

(Spatiotemporal credit assignment)
(Learning as message passing) (Tighter bounds)
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