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Regularized loss minimization

min £(w) + f(w)
wcR*

@ / is the loss function;

@ f is the regularizer, usually a (semi)norm;

Special interest:
@ sparsity;

Generic form for many ML problems:
@ computational efficiency.
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Moreau envelop and proximal map
Definition (Moreau’65)
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Proximal gradient (Fukushima & Mine'81)

min ({w) +— f{w)
weR©

QO y.=w:—nVi(w;);
QO w: ;= P._;[Yf}-

For ¥ = | - | ;, obtain the shrinkage operator

Py i = sign(yi)(lyil — 1)+

@ guaranteed convergence, can be accelerated;
@ generalization of projected gradient: 7 — /;

@ reveals the sparsity-inducing property.

Refs: Combettes & Wajs'05; Beck & Teboulle’09; Duchi & Singer'09; Nesterov'13; etc.
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Then A Miracle Occurs...
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How to decompose?

@ Typical structured sparse regularizers:
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How to decompose?

@ Typical structured sparse regularizers:

@ Not directly useful due to the inversion;
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How to decompose?

@ Typical structured sparse regularizers:

Theorem (Parallel Sum)

@ Not directly useful due to the inversion;

@ Can numerically reduce to P, and P_. (Combettes et al."11);
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How to decompose?

@ Typical structured sparse regularizers:

@ Not directly useful due to the inversion;

@ Can numerically reduce to P, and P, (Combettes et al.'11);

@ But a two-loop routine can be as slow as subgradient descent
(Schmidt et.al'11; Villa et al."13).
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Two previous results

Theorem (Friedman et al.’07)
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Theorem (Jenatton et al.'11)

Assuming the groups {z;} form a laminar system (g, "1z, =

o

then, if appropriately ordered,
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where is the restriction of | ,.p = {1.2. >0} to the group g;.

Generalization

But, is it even sensible?
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Nevertheless

@ (Can ask the decomposition to hold for many but not all cases.

@ Manipulating the optimality conditions:

. x ) ") = d
P¢. . (z) = argmin,, % z—w|"+(f +g)(w)
’ E ) p
Pg(z-} === .-1:*;‘111111“,% Z—W|" +g(w)
P.(P_(z)) = areminy = ||P_(z) — wi|” + f(w).
r 2 N w 2 =) | \
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Nevertheless

@ Can ask the decomposition to hold for many but not all cases.

@ Manipulating the optimality conditions:

Peig(Z) — 2+ 0(f + 8)(Pr (7)) 2
P_:_,__,EZ) — Z—«'}g[Pg{Z}) =,
Pr(P,(z)) — P (z) + 0f(P¢(P,(2))) >

On Decomposing the Praximail Map




Nevertheless

@ (Can ask the decomposition to hold for many but not all cases.

@ Manipulating the optimality conditions:

P, (z2) —z+(f +g)(P; 0

L)

{z))

IO

Pr(Pe(2)) — 2+ Dg(P(2) + IF (P(P(2))) 3
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Nevertheless

@ (Can ask the decomposition to hold for many but not all cases.

@ Manipulating the optimality conditions:

P (z) —z4+9(Ff + g)(Pr(z)) 2 C
PA(P.(z)) —z+3dg(P_(z)) + af(Ps(P_(z))) = C
Theorem
A sufficient condition for . _(z) =P, (P_(z)) Is
Vy&Eedomg. dg(FPely)) 2 dgly).

@ Fails to be necessary at boundary points

@ A special case appeared in a proof of (Zhou et al."12)
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The rest is easy

@ Find 7 and g that clinch our sufficient condition.
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Start with “trivialities’

Fixf. P, , =P;oP, forall g if and only if

O

e dm(H)>2;f=corf =154 +cforsomeccR andw c H;
@ dm(H)=1andf =i + c for some c = R and set C that is closed

and convex.

Asymmetry.

Fixg. P, _=P,0PF_ forall f if and only if g is continuous affine.

(

@ Reassuring the impossibility to always have P,

@ Still hope to get interesting results!
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Scaling Invariant < Positive Homogeneous

dg(Ps(y)) 2 9gly)
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Scaling Invariant < Positive Homogeneous

dg(Ps(v)) 2 9g(y)

g positive homogeneous & VA > 0. dg(Aw) = dg(w) = Vz.P,(z) x z
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Scaling Invariant & Positive Homogeneous

05
L

X Z

{l*'h{

.l_'r_ y :_
(w) = Vz.P.(2)

o positive homogeneous & 7\ > 0. dg(\w) = dg
Fix . The following are equivalent (provided dim(H) > 2):

).

|

).
). Forallz = H, P.(z) = A, - z for some A,

V).
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Scaling Invariant & Positive Homogeneous

Z positive homogeneous < 7\

Fix . The following are equivalent (provided dim(H) > 2):
). | for some fncreasfng function h: R. — R U {o0};
). For all perpendicularx L y, f(x+y)>fly);
). Forallz € H, P.(z) = \; - z for some )\, € [0.1];
wv). 0 cdomf and P, = P_.cP_ for all positive homogeneous =
If dim(H) =1, only ii) — i) ceases to hold.

Y-L. Yu (UofA)




Some Implications

Fix . The following are equivalent (provided dim(H) > 2):
1). £ = h(||-||) for some increasing function h : R . — R U {x
). For all perpendicular x | y, f(x+vy) > fly);
ii ).
V).

@ Characterizing representer theorem (Dinuzzo & Scholkopf'12);

Y-L Yu (UofA)



Some Implications

Fix 7. The following are equivalent (provided dim(H ) > 2):

i). £ = h(||-||) for some increasing function h - B . — R U {oc};
).

).

iv). 0 cdomf and P, _ =P, o P, for all positive homogeneous .

@ Double shrinkage;
@ 1 = |-||;: Elastic net (Zou & Hastie'05);

@ Adding an [>-ish regularizer, computationally, is free.
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Some Implications

Fix 7. The following are equivalent (provided dim(H) > 2):
i). £ = h(||-|) for some increasing function h - R . — R U {¢
).
ii).
iv). 0 cdomf and P, _— P, oP,_ for all positive homogeneous ¥ .

i) —> )

Tree-structured group norms
(Jenatton et al.'11)

-

Y-L Yu (UofA)



Permutation Invariant < Choquet Integral

dg(Ps(y)) 2 dgly)
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Permutation Invariant < Choquet Integral

Jg(Ply)) 2 9gly)
@ / permutation invariant = P (y) /y:
(vi —¥i)([Pe(y)]i — [P(y)lj) = 0

@ (/g invariant to comonotone vectors
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Permutation Invariant < Choquet Integral

@ { permutation invariant = P_(y) 'y:
(vi —¥i)([P£(y)li — [Pr(¥)li) =2 0
@ (/g invariant to comonotone vectors

e Choquet integral (a.k.a. Lovasz extension) of 1 - 29! — R:

XC 0

g(w) = / w(w > o) de + / u([w > ¢]) — p([d])] dt

0 o
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.y
@ Choquet integral (3.k.a. Lovasz extension) of

Permutation Invariant < Choquet Integral

/g Invariant to comonotone vectors

D _

Let ¥ be permutation invariant and g be the Choquet integral of some
Rl ' _oF

submodular set function ;1. Then,

Y-L. Yu (UofA)




Some Implications

Let © be permutation invariant and gz be the Choquet integral of some

submodular set function. Then, "__-_,;, =P,oP,.
® Special case f = -||; in (Bach'll);
@& Py on. =Py o, . (Fredus akal '07);
P _, =Py o---oP,, (Jenatiton et al."11)
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Some Implications

| 1 "
wi = E max{ |w;]|. |w;|}.
oscar -~ ) e,

Y

e Feature grouping (Bondell & Reich’08)
e P, in (Zhong & Kwok'11) \'r/"’

'OSCar

Let
r‘~‘;(W) - Y‘ rﬂax{'t-v_.-.. W }

i .
® |w oscar EI:E i *:(w)
[~ P ; = P'-.'.,a Q==+ 0 —

-
Uil

@ Given P_, constant time for P .

i
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Some Implications

Let © be permutation invariant and = be the Choquet integral of some

submodular set function. Then, P. _—=FP.cP_.
@ Special case f = -||; in (Bach'11);
&P an. =Py 0P,  {(Fredean ekal '07);
P D : D

e
\|
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Some Implications

— w - | Al ¢

Wiloscar — Z maX“”{f" . } :fo
@ Feature grouping (Bondell & Reich'08) | ]
@ P, in(Zhong & Kwok'11) ‘“‘mﬁi,/"'

Let
(w) = Z max{|w;|. |wj|}

® |IW oscar S:j:."i j (W)
.P_1-“’: -.'.5‘: _.P}-

i

¥
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Sufficient Condition Fails?

@ {Martins et al."11) showed that, under a shrinkage assumption, the
prox-decomposition (even not true) can still be used in a
subgradient-type algorithm

@ (Yu'l3a) showed that a simple linearization of the proximal map, i.e.

P+ £~ Y‘ P ,
k 'k i N

n

yields slightly faster convergence than the smoothing trick

Y-1. Yu (UofA) On Becomposing the Praximal Map



Summary

@ Posed the question: P, -4 PeoP, =P, 0P

e Presented a sufficient condition: dg(P.(y)) 2 dgly)
@ ldentified two major cases;

@ Immediately useful if plugged into PG;
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Summary

@ Posed the question: P, | 4 ProP, 2 P, oPy;

e Presented a sufficient condition: dg(P.(y)) 2 dgly);
@ ldentified two major cases;

@ Immediately useful if plugged into PG;

Thanks!

¥Y-L. Yu (UofA)






Non-Uniform Camera Shake Removal
using a Spatially Adaptive Sparse Penalty
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Problem & Objective

* Problem

— Camera shake blur caused by relative movement
between camera and scene during exposure.




Problem & Objective

* Objective
— Recover the sharp image from a single blurry
image with unknown camera shake.




Challenge |

lll-posed Problem: no unique solution
Sharp image X Blur kernel h

~ True
* Solution




Challenge lI

Real-World Camera Shake: spatial-variant




Non-Uniform Observation Model

... regarding challenge ||

Observation Model (projective Motion Path]

y:ijij—f—n:Dw—l—n D=[Px.Px,---]

J
?.]ll..lﬂ'\[ bilur _sharp ——
image  vector image

Tai et al. 2009
Hirsch et al. ICCV 2011




Non-Uniform Observation Model

... regarding challenge Il

Observation Model (projective Motion Path]

Y:ZH‘jPJXJrH:DWJrn D=[Px.Px -]

J =Hx+n H=) u,P;
. | | p
!:ilurr\,,r blur Fharp S—
image  vector image

Taietal. 2009
Hirsch et al. ICCV 2011



Sparse Image Prior

.. regarding challenge |

1 .
Likelihood  (ylx.w) x exp { ~{/ly — Hix|3

Image Prior [sparse gradient]
P00 xexp [~ 3 (e

Log # piuuls

¢(x;) is a concave function

BlurPrior p(w)

Work in derivative domain
X (vecterized) derivatives of the sharp image
y (vectorized) derivatives of the blurry image

Fergus et al. Removing camera shake from a single image, SIGGRAPH'06

qGrac:iientm



Direct MAP ?

MAP Estimation

max p(x, wly) = min — log[p(y|x, w)p(x)p(w)]

x.w>0) x. w=>0

- 2 ‘ -' P .
i [ly — Hx| + o Z g(z;) + 3 Z flw;)
i j

— Local minima and “no-blur” solution

— Empirical tricks

* initialization, structure selection/prediction [Cho and Lee SIGGRAPH
Asia’09, Xu & Jia ECCV’10, Hu et al. BMVC’12]



Type-ll Estimation

Likelihood p(y|x.w) o exp {—%Hy — Hx||;f,}

Image Prior p(x) ~N(x:0.T) T £ diag[+]

max p(y|x_ W)p(x)dx uniform p(w) is used
TW.A20 f o

Tipping et al. Sparse Bayesian Learning and Relevance Vector Machine, IMLR 2011
Levin et al. Eficient Marginal Likelihood Optimization in Blind Deconvolution, CVPR 2011
Wipf et al., Latent Variable Bayesian Model for Promoting Sparsity, IEEE TIT, 2011



Effective Cost Function

The Cost Function

Tnm}}ﬂ )\Hy Hx||5 + Z (x| hgll2, A) + (n — m) log A

U(u. ) £

21[- o .
+ log (:2)« +u +Fuv4l + ul) u >0
i+ V4 + u?

Wipf et al., Latent Variable Bayesian Model for Promoting Sparsity, IEEETIT, 2011



Effective Cost Function

The Cost Function

- | - _
min |~y —Hx|3 >  &(|z:[[hsl2. ) + (n — m) log A

XY, WA

U(u.A) =

2u o -
+ log (2)\ + u” +uv4l + uz) u>0
uw+ VAN + u?

reconstruction error

Wipf et al., LatentVariable Bayesian Model for Promoting Sparsity, IEEETTT, 2011



Effective Cost Function

The Cost Function
1 ; — o
K;WIEVJ&EO ;{“y — Hix||5 + Z U (|x;|||hgll2, A H (n — m) log A
b N) £ —— + log (2 +u? +uVD+ ) w0
| u+ VAN +u? =

sparse penalty function
Y(u) is a cancave, non-decreasing function of u

Wipf et al., Latent Variable Bayesian Model for Promoting Sparsity, IEEETIT, 2011



Effective Cost Function

The Cost Function
. Ally Hx||; + Z U(|zi|[[hlj2, A) +{(n —m) log A
h(u,A) & — 2 log (2A + v + uVAA +u2) u >0
(. )u‘l_vlm+0g(u +u” 4 uv- +u) u >
noise level penalty term

Wipf et al., Latent Variable Bayesian Model for Promoting Sparsity, IEEETT, 2011



Effective Cost Function

The Cost Function

L HY HX|I2+ZL(IIzlllhII) A) + (n —m)log A

A>0 )\
2u 2
U(u. ) £ + log (2)« +u” +uvar + u?) u >0
4 ) u+ Vil + u?

can be solved using the majorization-minimization technique

Wipf et al., Latent Variable Bayesian Model for Promoting Sparsity, IEEETTT, 2011



Effective Cost Function

The Cost Function

_min ~—||y Hx||2 + ZL(|EE|||11|[) (n —m)log A

w.A>0 A

(’

looks similar, what’s the real advantage...
(over the regular MAP)?

ml;lmlly HX||2+GZQI1 +3qu3




Challenge Il Revisited

Real-World Camera Shake: spatially-variant

* Effect of Spatially-Variant Bluron H

— Imbalanced Columnof H ( H= [h;.hs.---])

* Each column of H corresponds to a localized blur kernel
 Large blur has smaller L2 norm (h; = 0,X h; = 1)
* Columns of H have different L2 norms (local kernel norm |h;|}.)

H=[h.hy -]

]




Challenge Il Revisited

Real-World Camera Shake: spatially-variant

» Effect of Spatially-Variant Bluron H

— Imbalanced Column of H ( H= [hi.hs.---])

* Each column of H corresponds to a localized blur kernel
 Large blur has smaller L2 norm (h; = 0,X h; = 1)
* Columns of H have different L2 norms (local kernel norm |h,|2)

H=[h.hy,-]

F= . D

Bias image recovery and therefore affect the
kernel estimation.

s R




Model Properties

Automated Column-Normalization

* Column-Normalized Sparse Estimation

z;||[h;l|2, A) + (n — m) log A

, 1
min —
x;v.w,A>0 A

ly — Hx||3 + > o

local kernel norm embedded
compensates for the spatial variance



Model Properties

Automated Column-Normalization

* Column-Normalized Sparse Estimation

_min_ Ally Hx||2 +Z U

(1 [ [ 24 A

=i — If“ht’HQ ‘

min HY Hz 2 -I-Z

.M WA)[}/\

U(|zi], A) +

H is the column-normalized H

)+ (n —m)log A

—m) log A



Model Properties

Automated Column-Normalization

* Column-Normalized Sparse Estimation

mu;}ﬁ /\||y Hx||5 + Z U(|x;| |[h;ll2d A) + (n — m) log A

x large structure, low blur region
< — Iy ”h-i | | 2 wil be naturally emphasized

min H.Y Hz|? + Z (|z:l, A) + (n — m) log A

. W,\??O/\

i ™
Avmds premuture favoring of any one element

of z over another
(thus avoid biased image recovery )




Model Properties

Automated Column-Normalization

» Effects of Column-Normalization (blind deblurring)

Blurry image from Harmeling et al.
NIPS2010




Challenge | Revisited

lll-posed Problem: no unique solution

* Two Effects of Blur on Sparsity Measure (Lp-norm)
1. Reducessparsity > [v!" /
2. Reduces variance Z 5P\

—original

1t signal |"'b|UlTE.‘dfh
08
0.6+
0.4
0.2k
03

0 40 20 0 20 40 )

Levin et al., CVPR 2009

3wl
L

12;

10

8‘:

]

—original

sparse penalty val. ---blurred .

factor2
dominates

natural image prior

T T S
R e

05



Challenge | Revisited

lll-posed Problem: no unique solution

* Two Effects of Blur on Sparsity Measure (Lp-norm)
1. Reduces sparsity Z %l? /
2. Reduces variance Z 5l \

12;
/ \\ —original
o, sparse penalty val. ---biurred.

= 8'#."-
Very concave penalty (e.g. ). factor1
LO-norm) should be used  dominates

\ / % 05 p 1 1.5 2

Levin et al., CVPR ZU0S




Challenge | Revisited

lll-posed Problem: no unique solution

* Two Effects of Blur on Sparsity Measure (Lp-norm)
1. Reduces sparsity Z wl® /
2. Reduces variance Z el \

12;
/ \ —original
0, sparse penalty val. ---blurred .

Very concave penalty (e.g. | i
LO-norm) should be used | = | tiors

’ dominates
4+ »

Non-Convex Problem!!!

21
k / % 05 1 15 2

levin et al., CVPR 009




Model Properties

Noise Dependent Homotopy Continuation

* The penalty function in the proposed model
— A qualified “very concave” sparse penalty

no-blur solution

AsAi— 0, Zw(lzil: A) — Cliz|lo avoidance

2u
u+ VAX+ u?

{
. \) & + log (2,\ + u* + uv4l + uf) w =10 ' v




Model Properties

Noise Dependent Homotopy Continuation

* The penalty function in the proposed model
— A qualified “very concave” sparse penalty

no-blur solution

Asi— 0, E w(lzilxa) 1 C“Z”g avoidance
— Adaptive penalty shape

As iis large, Y ¥(|z;|,4) — 2|z|ly/V4

2u i ——
+ log (EA +ut + uv4d + u—) u >0

. \) £ :
witA) w4+ VAN + u? 7.
L




Model Properties

Noise Dependent Homotopy Continuation

* The penalty function in the proposed model
— A qualified “very concave” sparse penalty

no-blur solution

Asi— 0, 21P(|Zi|.-)~) _}CHZHO avoidance
— Adaptive penalty shape

As dis large, Y ¥(|zi|, 4) — 2||z|ly/V4

local-minia

avoidance
If A, < A5, then Y (u, 4¢) < P(u, 1,) k //:::
foru=>0 N\ S
L
i 2u s 2
t'{r:.,\}:rf+m+log(2,\—:—i: -—HV'—L)L-I‘-H) Tl .




Model Properties

Noise Dependent Homotopy Continuation

* The penalty function in the proposed model
— A qualified “very concave” sparse penalty

no-blur solution
As A — 0: le(lzilxl) —?C”Z”g avoidance
— Adaptive penalty shape
As Ais large, Y ¥(|z;|, 1) — 2|zl /VA »
local-minia
avoidance
If 2.1 < 2.2, then l[)(u, 3.1) < ]p(u, A.z)
foru=>0
Uu.\) 2 \/;i:\T + log (2;\ + u” + uvm) u > : ,-.
[ e = z{_

Wipf et al., Latent Varianbel Bayesian Model for Promoting Sparsity, IEEETIT, 2011 0



Model Properties

Noise Dependent Homotopy Continuation

* The penalty function in the proposed model
— A qualified “very concave” sparse penalty

no-blur solution

AsiA— 0, Z w(lzilxl) — C“Z”g avaidance
— Adaptive penalty shape

As A is large, Y ¢¥(|z;|, 1) — 2||z||{ /YA

local-minia

avoidance
If 11 < 12, then 1,0('!1, 111) < l‘b(u, Az)
foru=>0
wlu. ) £ 2 + log (‘_—'.); + ue 4+ w4 + ng) u >0
‘ u+vVAAFu: N B Z;

Wipf et al., LatentVarianbel Bayesian Model for Promoting Sparsity, IEEETIT, 2011 0



Model Properties

Noise Dependent Homotopy Continuation

* Implications on Camera Shake Removal

— Initially, 4 is large, penalty function is less concave
* de-emphasize high blur regions (z; small)  z=x{|k:|l2
» focus first on large structure (x; large), low blur ({}]h;||»
large) regions

— Later, A is reduced, relative concavity of Y is
increased, more fine details will be recovered
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* Implications on Camera Shake Removal
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* de-emphasize high blur regions (z; small)  z=x;{|k;]|-
» focus first on large structure (x; large), low blur (}}A;||>
large) regions

— Later, 4 is reduced, relative concavity of Y is
increased, more fine details will be recovered
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* Implications on Camera Shake Removal

— Initially, A is large, penalty function is less concave
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* Implications on Camera Shake Removal
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* de-emphasize high blur regions (z; small)  z=x{|h;|-
» focus first on large structure (x; large), low blur {}|h;||>
large) regions

— Later, A is reduced, relative concavity of Y is
increased, more fine details will be recovered




Model Properties

Noise Dependent Homotopy Continuation

* Implications on Camera Shake Removal

— Initially, A is large, penalty function is less concave
* de-emphasize high blur regions (z; small)  z=x;]|h;]|-
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Noise Dependent Homotopy Continuation

* Implications on Camera Shake Removal

— Initially, A is large, penalty function is less concave
* de-emphasize high blur regions (z; small)  z=x;{|h]|-
» focus first on large structure (x; large), low blur (}]h;||>
large) regions

— Later, 4 is reduced, relative concavity of Y is
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Model Properties

Noise Dependent Homotopy Continuation

* Implications on Camera Shake Removal

— Initially, A is large, penalty function is less concave
* de-emphasize high blur regions (z; small)  z=x;{|k:]l2
« focus first on large structure (x; large), low blur {}]h;||»
large) regions

— Later, A is reduced, relative concavity of Y is
increased, more fine details will be recovered




Model Properties

Tuning Parameter Free

* The proposed cost function

.. B . 5 |
min —|y — Hz||; + Z U (|zil, A) + (n —m)log A

z:v.wAS0 A\

— Learning A
— Tuning parameter free



* Test Images
— Real-world blurry images from literature

* Compared Methods
— Harmeling et al. NIPS 2010
— Whyteetal. CVPR 2010
— Gupta et al. ECCV 2010
— Hirsch et al. ICCV 2011
— Joshietal. SIGGRAPH 2010 [hardware asisted]
— Choetal. Pacific Graphics 2012 [dual image]

All the compared results are from the original authors



Experimental Results

An illustration

Blurry Image™ &

A test blurry image from
Harmeling et al. , NIPS 2010.
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Experimental Results
comparison with Harmeling et al. NIPS'10
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Experimental Results
comparison with Harmeling et al. NIPS'10
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Experimental Results
comparison with Whyte et al. CVPR’10

Whyte et g:’

0. Whyte et al., Non-uniform deblurring for shaken images, CVPR, 2010.




Experimental Results
comparison with Gupta et al. ECCV’10

Gupia.et.al.

Gupta et al., Single image deblurring using motion density functions, ECCV, 2010.



Experimental Results
comparison with Hirsch et al. ICCV’11

S. Hirsch et al., Fast removal of nen-uniform camera shake, ICCV, 2011.



Experimental Results
comparison with Joshi et al. SIGGRAPH'10

N. loshiet al. , Image deblurring using inertial measurement sensors, SIGGRAPH, 2010.
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comparison with Cho et al. PG’12
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comparison with Cho et al. PG'12
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Summary

* An effective approach for camera shake removal
— simple & clear cost function
* Model property analysis

— automated column normalization (spatially adaptive
sparsity): high-bur, low structure regions will be de-
emphasized first, and emphasized progressively later

— noise dependent homotopy continuation
— tuning parameter free
» State-of-the-art performance on real-images

» Applicableto other problems (e.g., structured
dictionary learning)



Thank you!

Questions?

Welcome to our poster Fri26
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* An effective approach for camera shake removal
— simple & clear cost function
* Model property analysis

— automated column normalization (spatially adaptive
sparsity): high-bur, low structure regions will be de-
emphasized first, and emphasized progressively later

— noise dependent homotopy continuation
— tuning parameter free
» State-of-the-art performance on real-images

» Applicableto other problems (e.g., structured
dictionary learning)
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