Microsoft Research

Each year Microsoft Research hosts hundreds of influential speakers from around the world including leading scientists, renowned experts in technology, book authors, and leading academics, and makes videos of these lectures freely available. 2013 © Microsoft Corporation. All rights reserved.

New methods for the analysis of genome variation data

Richard Durbin Wellcome Trust Sanger Institute rd@sanger.ac.uk

The era of sequencing genomes

	Size (Mb)	Ger	nes	C	ompletion date
H. influenzae	2	1,700	1/1kb	Bacterium	1995
Yeast	13	6,000	1/2kb	Eukaryotic cell	1996
Nematode	100	18,000	1/6kb	Animal	1998
Human	3000	20,000	1/150kb	Mammal	2000/3

Between 2000 and 2010 DNA sequencing costs dropped by five orders of magnitude

This scaling, now generating PB data per year, challenges data analysis

We can now study genetic variation directly by sequencing

- 2000: First human genome ~\$1 billion
- 2009: ~200 human genomes sequenced
 Human genome \$50k
- 2012/13: Thousands of genomes for research – Human genome <\$5k
- 2015/16: Human genome < \$1k
 - Millions of human genomes for clinical usage, research, personal interest

We need to use the structure in the data for representation and inference

• At each point in the genome we are descended from a common ancestor

- At each point in the genome we are descended from a common ancestor
- Mutations since the common ancestor give rise to genetic variants shared by the descendants

- At each point in the genome we are descended from a common ancestor
- Mutations since the common ancestor give rise to genetic variants shared by the descendants
- Some mutations are associated with disease: the frequency in disease cases is different from in controls

- At each locus there is a tree
- Ancestral recombinations change the tree as you move along the genome
- The resulting Ancestral Recombination Graph describes the way that individual sequences in a sample are related

- At each point in the genome we are descended from a common ancestor
- Mutations since the common ancestor give rise to genetic variants shared by the descendants
- Some mutations are associated with disease: the frequency in disease cases is different from in controls

- At each locus there is a tree
- Ancestral recombinations change the tree as you move along the genome
- The resulting Ancestral Recombination Graph describes the way that individual sequences in a sample are related

- At each locus there is a tree
- Ancestral recombinations change the tree as you move along the genome
- The resulting Ancestral Recombination Graph describes the way that individual sequences in a sample are related

a ..C..G..A.. b ..T..G..C.. c ..T..A..A.. d ..T..A..C..

- At each locus there is a tree
- Ancestral recombinations change the tree as you move along the genome
- The resulting Ancestral Recombination Graph describes the way that individual sequences in a sample are related

- At each locus there is a tree
- Ancestral recombinations change the tree as you move along the genome
- The resulting Ancestral Recombination Graph describes the way that individual sequences in a sample are related

- At each locus there is a tree
- Ancestral recombinations change the tree as you move along the genome
- The resulting Ancestral Recombination Graph describes the way that individual sequences in a sample are related

Inference on ARGs is hard

- There is a natural generative model for ARGs

 Coalescent with recombination (Kingman, Tavare, Griffiths)
 "Prune and graft" Markovian approximation is very good
- But infinitely many ARGs satisfy a data set

- Sampling histories is hard, as is conditional sampling

- At each locus there is a tree
- Ancestral recombinations change the tree as you move along the genome
- The resulting Ancestral Recombination Graph describes the way that individual sequences in a sample are related

Inference on ARGs is hard

- There is a natural generative model for ARGs

 Coalescent with recombination (Kingman, Tavare, Griffiths)
 "Prune and graft" Markovian approximation is very good
- But infinitely many ARGs satisfy a data set

- Sampling histories is hard, as is conditional sampling

Sequencing accuracy requirements

refNCB135	3881	CCTCOSCCTCOCAGG	TTCAACTGATTCTTCTGCCTCAGCCTCCCAAGTASCTSSGATTACAGSCGAGCSCCACCACACCTGSCTAACTTTTTGTATTTTTTASTAGAGACGSGGTTTTS	9000		
Venter	8881	E				
Watson	8881			9000		
zefNCBI36	9001	CCACGTTGGCCAGGCT	TGGTCTTGAACTOCTGACCTCAGGTGATCTGCCCGCCTTGGCCTCCCAAAGTGCTGGGATTACAGGTG2GAGCTACCGCGCTTAGCCCAGTGATAGAGTTTTTGT	9120		
Venter	9001			9120		
Watson	9001			9120		
zefNCB136	9121	TOCCARARCARACAS	INTGANCATATGATASCTCTAATAAAAAATGCTGTTTCTTTGTTCTCATAATTTCAGTAGCTGAACTATGCTCCATTTCATCTGTAAAAGAGAAAATAATCTGTRC	9240		
Venter	3121			9240		
Watson	9121			9240		
refNC3136	9241	CITCITGAGIG	ARGANATGANGCANAMTANCINTITATANTAGIGANGMIRARGCITIRGGANAAARTGAGANGATGCITIRGAATGITINAAATMGCITITAATAATR	9360		
Venter	9241	******		9360		
Watson	9241			9360		
refNCBI36	9361	ATACPUTATIATITE	AAAGAATSTROGCROTTOTGATTTTTTCCCCCAACATTTCATCAGAGAGAGAGAAAAGGTGCTGCCAAAATTGCAGACTTCCACATGAAAGATTTCACTATGCCAGG	3480		
Venter	9361	51				
Watson	9361			9480		
refNC3136	9481	TGACCTGCACTAGAAG	GEAGGETTAATAACCCTGFTTTCATGGGCTGFCTTGCTFTCACAATGAATGGTCTCCTTFTGCAATGAATTTTTGAAGTTTTGTTFTTATTTATTCTATGTAATAA	9600		
Venter	3481			9600		
Watson	9481			9600		
refNCBI36	9601	TTTGGCTACATGTAAI	ITATT TAGET GECT TTAGAGT CAT GGACATT GGACAATT GAAGATT TICT GGT CEAATATT TE TE TAAGTAT GT TE GT CAT ET TAAAGAAGGGE ET TG GG	9720		
Venter	9601			9720		
Watson	9601	*****	***************************************	9720		
refNCB136	9721	ATCAATTAGGTCAGG	AAACTGCTGAGTTAAAAAAAGATTTTTAGTTTTSTGSGAGTTGGGGAAGGTGAGAACATTCCTGAGACTTTAATATGCTAATATGAGTCTCTCACAGAGAAACAACA	9840		
Venter	9721			9840		
Watson	9721			9840		
refNC3I36	3841	TACAGTOTTTTACAAN	NOTTACTION CLACADA ACCITITITCICO POGICITIGITI ACTOMINACIONA ACTOMINICATI TRANTITICA AL GARA ACOMO A DE CALADI GO	2960		
Venter	9841			9960		
Watson	9841	**********		9960		
refNCB136	9961	AGCAATATAGCAGTTI	TATTTAARGARCTOGACTEGARCTA	10000		
Venter	3961	***************		16008		
Watson	3961			10000		

http://www.ensembl.org/Homo_sapiens/Location/SequenceAlignment?db=core;g=ENSG00000187772;r=6:105569758-105579757

Sequencing accuracy requirements

refNCB136	8881 CCTCCGCCTCCCAGGTTCAACTGATICTTCTGCCTCAGCCTCCCAAGTAGCTGGGATTACAGGCGAGCGCCACCACCTGGCTAATTTTTTGTAFTTTTTTAGTAGAGAGGGGGTTTTG	9000
lenter	8881	9000
latson	9881	9000
refNC3136	9601 CCACGTTGGCCAGGCTGGTCTTGAACTCCTGACCTCAGGTGATCTGGCCGCCTTGGCCTCCCAAAGTGCTGGGATTACAGGTGTGAGCTACCGCGCCTTAGCCCAGTGATAGAGTTTTTGT	9120
/enter	9001	9120
Natson	9001	9120
ef%CBI36	9121 TGCCRABACAAAACATATGAACATATGATAGCTCTAATAAAAAATGCTGTTTCTTTGTTCTCATAATTTCAGTAGCTGRACTATGCTCCATTTCATCTGTAAAAGAGAAATAATCTGTAC	9240
Tenter	9121	9240
latson	9121	9240
efNCBI36	9241 CITCITGREEGEMEAGGGRGAARGGAARGGAARGGAARGGAAARGAARGCINTTATANTIAGTGAGAAGGCITEAGGAAAARTGAGAAGREETTTAGAARGTTAAARATMECTITTAATAATA	9360
Tenter	3241	9360
fatson	9241 <mark>8</mark>	9360
efNCBI36	9361 AFACFFEATTATTTTAAAGAATGTAGGCAGTTGTGATTTTTTCCCCCAACAFFECAECAGAGAGAGGGCCCCCCCCAAAETGCAGACTTCCACATGAAAGAFTICACTATGCCAGA	9480
lenter	9361	9480
latson.	9361	9480
refNC3136	3481 TEACCEDEACT 10/ folge positives incoling 10-5 evene pour be TETLATUATUATUATUATUATA	9600
Tenter	³⁴⁸¹ TGACCTOCACT 1% false positives implies 10 ⁻⁵ errors per bp	9620
latson	3481	9600
efNCBI36	9601 TITIGGCTACATGTAATTATTTAGCTGCCTTTAGAGTCATGGACATGGAGAATTGAAGATTTCTCGGTCCAATATTTCTCTAAGTATGTTCGTCATCTGTACTTAAAGAAGGGGCTCTGGG	9720
/enter	9601	9720
latson	9601	9720
efsCBI36	9721 ATCAATTAGGTCAGGAAACTGCTGRGTTAAAAAAGATTTTTAGTTTTGTGGGRGTGGGGRGGTGAGAACATTCCTGRGACTTTAATATGCTAATATGAGTCTCTCRCRGRGAAACAACA	9840
Tenter	9721	9840
fatson	9721	9840
ef3CBI36	9841 TACMOTOTTTACAAACTTACTTENCEACHAARCCTTTTTCTCGTSGTCTTGTTGTTACTCAGAACTCAAATCTTTTSNATTTACAAATEAACAGAARCGACAGCAAATGGCTTATTCAA	9960
Tenter	9841	9960
Vatson	9842	9960
efNCBI36	3961 AGCAATATAGCAGTTTATTTAAAGAACTGGACTTGAACTA	10000
Venter	3961	18008
fatson	9962	10009

http://www.ensembl.org/Homo_sapiens/Location/SequenceAlignment?db=core;g=ENSG00000187772;r=6:105569758-105579757

Sequencing accuracy requirements

refstat36	8881 CCTCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	9000
lester	8881	9000
Tatson	8001 8001	9000
terNCBI36	9601 CCACGTTGGCCAGGCTGGTCTTGAACTCCTGACCTCAGGTGATCTGCCCGCCTTGGCCTCCCAAAGTGCTGGGATTACAGGTGTGAGGAGCTACCGCGCCTAGCCCAGTGATAGAGTTTTTTGT	9120
Venter	9001	9120
Vatson	9001	9120
tefNCBI36	9121 TGCCRABACAARACATATGARCATRIGATAGCTCTAATRABARATGCTGTTTCTTGTTCTCRTAATTTCRGTRGCTGARCTATGCTCCATTTCRFCTGTRABAGAGAARATAATCTGTRC	3243
Venter .	9121	9240
Vatson	9121	9240
efNCB136	9241 CTTCTTGRGTGGAGAGGGGGGAGAAAGGAAATGAAGGAAAATAACTATTTATAATTAGTGAAGAGAAAASCTTAGGAAAAAATGAGAGAGGTTTAGAAATGTTAAAAAAAGCTTTAATAATA	9360
Venter	9241	9360
(atson	9241	9360
efSCB136	4361 ATACTITATIATITTAAACAATCTACCCOCTACTITTTCCCCCAACATTICACCACACACACACACACA	5480
Tenter	4361	9480
Vatison.	3361	9480
refNC3136	PART TRACTORACT 10/ C 1 11 11 10 5	9600
lenter	9481 TEACCTOCACE 1% false positives implies 10-5 errors per bp	9600
latson	9481	9600
efscarae	9601 TEROCIACATOTAATTATTTAOCIGCUTTAGAGICA INGACIALTINGAGATTING NOTICAATATTICTCTAASTATGTICSICATCIGTACITAAAGAAGOOCECIDOG	9720
/enter	9601	9720
atson	9601	9720
cefNCBI36	2121 AT >1000 individuals implies <10 ⁻⁸ errors per bp per person	9840
Venter		9840
fatson	9721	9840
tefNC3I36	9841 TACAGEGETTEACAAACTEACTEACEACAAAACCETTEECEGEGECETGEEGETTEECAAACTCAAACCETTEECAAATGAACAGAAACGACAGAAACGACAAATGGCETAETCAA	9960
Tenter	9841	3960
Vatson	9841	9960
eef%CB136	9961 AGCAATATAGCAGTTTATTTAAAGAACTGGACTTGAACTA	10000
Penter	3961	18008
Tatson	3961	10000

http://www.ensembl.org/Homo_sapiens/Location/SequenceAlignment?db=core;g=ENSG00000187772;r=6:105569758-105579757

- International project to construct a next generation open access baseline data set for human genetics
 - Consortium with multiple centres, platforms, funders
 - Conceived in 2007, pilot projects published Oct 2010, phase 1 with 1092 samples published November 2012, Completion 2014
- Aims
 - Find >95% accessible SNPs at allele frequencies above 1%, down towards 0.1% in coding regions
 - Also discover and characterize indels, structural variants
 - Identify a reference set of human genome sequences
- Driver for data and methods

Pilot project 179 samples (Nature 2010)

~100 per population: 4x Whole Genome Shotgun + Deep Exomes

Pilot project 179 samples (Nature 2010) Phase 1: 1,092 samples (Nature 2012)

~100 per population: 4x Whole Genome Shotgun + Deep Exomes

Pilot project 179 samples (Nature 2010) Phase 1: 1,092 samples (Nature 2012)

Phase 3: >2,500 samples sequence complete

~100 per population: 4x Whole Genome Shotgun + Deep Exomes

A wealth of data

Call set	Samples	SNPs	Sensitivity (HapMap3.3)	FP (in 59,721 monomorphic OMNI sites)	Genotype accuracy (HapMap 3 hets)
Pilot	179	15.2M	97.65%	43,606	97.75%
Phase I	1,092	38.0M	98.87%	1,261	99.24%
Also int ~500k exe I.4M i I4k large Omni genot	ome calls, ndels, deletions, 2.5M ypes	73.80 Mb	ALMS1	P13.1	73.89 Mb MXL CLM PUR ASW LWK AFR YRI JPT CHB EAS CHS TSI CEU IBS FIN GBR

Distribution of functional variants

Common deleterious mutations are removed by selection Pilot paper

Per individual deleterious variant load

Variant type	Number of variants (pop range)	Excess rare deleterious <0.5%	Excess low freq deleterious 0.5%-5%
All sites	3.75M-4.7M		
Conserved sites (GERP>2)	140k-200k	150-510	250-1.3k
Synonymous conserved	1.4k-1.9k		
NonSyn conserved	2.7k-4k	76-190	77-130
Loss-Of-Function conserved	116-175	6-13	-3
Non-coding RNA conserved	200-290	1-3	4-13
Motif loss in TF peak (incomplete)	670-1020	8-22	20-110

Linkage

Linkage

Over a million people genotyped Published Genome-Wide Associations through 07/2012

Linkage

Linkage

Linkage

A few genes in the middle zone have been found by candidate studies

- Sequence
 - 4,000 cohort samples genome wide: TwinsUK and ALSPAC
 - 6,000 exomes from samples with extreme phenotypes
- Goals
 - Direct association in sequenced samples
 - Impute new variants into additional samples, GWAS sets
 - Provide a sequence variation resource for use in further studies
- Progress
 - Data collection started late 2010
 - 4,004 WGS samples sequenced, ~6,300 exomes sequenced
 - Calls on ~3,700 WGS and ~6,200 exomes available
 - Greater than 50M variants, many novel

Cohorts initial analysis: 54 traits in 14 groups on 2,453 samples

tor Waddawry, in High the and

Fig 4: Association between CETP SNPS and HDL for ALSPAC WGS (N=655), ALSPAC HapMap2 imputed GWAs (N=2,791) and ALSPAC 1000G/UK10K imputed GWAs (N=2,791).

Some potential candidate new loci < 2.5% or < 10% poorly tagged

Alternative strategy: Impute full sequences into GWAS studies from reference sequences

a	g	a	g	t	t	g	a	g	g	g	a	a	С	С	t	g	a	g	a	a		
t	g	а	g	a	С	g	а	g	g	g	a	a	а	t	t	g	a	g	а	С		Reference haplotypes
t	g	С	g	а	С	g	g	t	g	а	t	t	С	t	С	С	a	g	а	С		
a	g	С	g	а	С	g	a	t	g	g	t	а	С	t	t	g	a	t	С	а	-	via sequencing
t	a	а	g	t	t	а	g	t	а	а	t	t	C	С	С	g	а	g	С	а		studies
t	g	С	a	а	t	g	a	g	g	g	а	а	а	t	t	g	t	t	а	а		
a	g	а	g	а	С	g	g	g	g	g	a	а	а	t	t	С	t	g	С	С		e.g. 1000 GP, UK10K
	g g a				a c t			g t g		g a g				t t t			a t t			a c a		
	g				С			g		g				C			a			a		Genotype data from
	g				С			t		g				t			t			С		GWAS
	g				С			g		g				С			a			a		e.g. T2D, Arthritis,
	g				t			g		g				t			a			С		
	а				t			t		a				С			a			a		

Imputing missing data from reference sequences

Reference haplotypes via sequencing studies eg. 1000 Genomes Project

Imputation of unobserved alleles via matching of shared haplotypes

Imputing missing data from reference sequences

Reference haplotypes via sequencing studies eg. 1000 Genomes Project

Hidden Markov Model: "select and copy", e.g. IMPUTE, MACH

Effectively an approximation to conditional sampling on the ARG

Imputation of unobserved alleles via matching of shared haplotypes

Imputing missing data from reference sequences

1000 Genomes Project Imputation Accuracy

Improvements from pilot to phase 1 using GAIN psoriasis dataset

Reference	MAF 1-3%	MAF 3-5%	MAF >5%
1000G Pilot	.69	.77	.91
1000G Phase 1	.82	.85	.94

The Haplotype Consortium: Chromosome 20 pilot

COHORT	#samples	coverage	#SNPs
1000GP	379	4	338,766
UKIOK	3,781	6.5	1,004,955
ORCADES	399	4	259,373
FINNS	1,941	4	315,539
GoNL	748	12	434,984
GoT2D	2,874	4	570,847
AMD	630	4	355,438
SARDINIA	2,120	4	372,632
MTFS	687	6	468,672
TOTALS	13,559		1,649,648

We created a union set of sites across 9 studies

Only use sites with >10 minor alleles i.e. MAF > 0.03%

- 427,589 sites
- 26.5% missing genotypes:
- fill in by imputation

Pilot Results: 13,559 sequences chr20

Non reference allele frequency (%)

Jonathan Marchini and Olivier Delaneau, Oxford

1000 Genomes

Goncalo Abecasis Gil McVean

Sardinia

Francesco Cucca Serena Sanna David Schlessinger Carlo Sidore

Finns Aarno Palotie

GoNL Cisca Wijmenga Paul I.W. de Bakker Morris A. Swertz Androniki Menelaou UKIOK Nicole Soranzo Nick Timpson George Davey-Smith Tim Spector

Orcades Jim Wilson

AMD Anand Swaroop Dwight Stambolian Emily Chew

HUNT Cristen Willer Kristian Hveem

Xiaowei 7han

GoT2D Mark McCarthy David Altshuler Mike Boeknhe

MTFS ScottVrieze Matt McGue Bill Jacono

Bipolar Mike Boehnke Richard Myers

Helic Eleftheria Zeggini

Crohns/UC Jeff Barrett Carl Anderson Italian Isolates

Paolo Gasparini Nicole Soranzo Daniela Toniolo Nicola Piratsu

Oxford Warren Kretzschmar

WT Sanger Institute Shane McCarthy

Michigan Christian Fuchsberger Hyun Min Kang

Imputation is also used to integrate data from low coverage sequencing

- To find the sequence of a single sample stand alone one needs to sequence at ~30x depth or more
- To find low frequency variants we want to sequence many samples
 Fraction of SNPs discovered
- Spread sequence across more samples

in 2453 UK10K samples

Phase I power and genotyping accuracy

SNP detection

Genotyping accuracy

How to improve/speed up imputation?

- HMM based methods such as IMPUTE are computationally heavy
 - Quadratic (linear) in number of reference sequences
 - Typically use MCMC sampling
 - 1000s of CPU days for current data sets

• They will not scale to millions of genomes

New data structure for fast matching Positional Burrows-Wheeler Transform (PBWT)

010010101000000111011100100100000000000	010000100 1 0000000110110010000
010010010110110011111000101010000100100	010000100 1 1001000001100011110
01101011000100001001110010010101000010010000	010100100 1 100100010010010010
010010010001000100111000101010100001001	010100100 1 1001000100100100010
011001010001001001100100110001101000100011010	100000010 1 010000010010000010
01000101010100001001111101010100000001000101	10000010 1 0100000100100010000
011001010010010010000000101010100000001000101	100000010 1 010000010010000010
11000101000100110001111100010101000010010000	100000010 1 0100000010101000010
010010110001000000000000000000000000000	01000010 0 1000011100100010000
011001010111000010100011010100010000001000101	010100010 1 0000100001100010000
0110010101000001010111101010100000110101	110100010 1 0000100001100010010
0110010100010001001110010011010000000011010	101100010 0 1000001100000100010
010010010010010010010010101010000100100	101100010 0 1000101100100000010
6110010100010100111110001010100000100100	101100010 0 100010110010000010
0100100101101100110111100010101111100000	010110010 0 0000100010110000110
0100100101000000000000000101000011000010000	310110010 0 0000100010110000111
000001310010001110011111100100010011000100010000	100101010 1 0000000110100010000
010010010110110011001001001000000000000	010010110 0 0100000110110010010
0100010100010001001100100110001101000100011010	100110011 0 1000000100100000010
010010011010001100011100100101000000000	010110011 0 1010000010101000000

Reverse sorted prefixes at k

Matches are adjacent in the sort order Analogous to BWT used by BWA, BowTie etc. for sequence matching

Updating sort order is linear time

$y^{k}[k] = y^{k+1}[k+1]$

		1 0000001101 1 1 1001000011 1 1 1001000011 1 1 10010000011 1 1 10010000011 1 1 00100000011 1 1 00100000001 1 1 01000000001 0 1 01000000001 0 1 0000000000
--	--	--

Reverse sorted prefixes at k

Let u_i be the number of 0s in y before i, i.e. $u_i = i - \sum_{j < i} y_j$ And c be the total number of 1s in y, i.e. $c = \sum y_j$ Then i maps to u_i if $y_i = 0$, and $c + i - u_i$ if $y_i = 1$.

New data structure for fast matching Positional Burrows-Wheeler Transform (PBWT)

010010101000000111011100100100000000000	1 0000000110110010000
010010010110110110011111000101010000100100010000	1 1001000001100011110
011010110001000100111001001010100001001	1 1001000100100100010
9109100100010002190111090121010100001001001000110000001100000100000	1 1001000100100100010
01100191000100010011100100110000110100010001010	1 0100000100100010010
010001010100000100111110101010000000000	1 0100000100100010000
011001010001001100100000010101010000000	1 0100000100100010010
	1 0100000010101000010
	0 1000011100100010000
	1 0000100001100010000
0110010101100000101011110101010000011010	1 0000100001100010010
	0 1000001100000100010
010010010000110010011000010101010000010010000	0 100010110010000010
0110010100010101100111110001010100001001000100010000	0 1000101100100000010
	0 0000100010110000110
010010010100000100000000101000011000010000	0 0000100010110000111
0000010100001110011111100100010011800100011000000	
	0 0100000110110010010
010001010000100111001001100001000100011010	0 1000000100100000010
010010011010001110001010010010100001001	0 1010000010101000000

Reverse sorted prefixes at k

Matches are adjacent in the sort order Analogous to BWT used by BWA, BowTie etc. for sequence matching

Updating sort order is linear time

$y^{k}[k] = y^{k+1}[k+1]$

i:101110010010000000100000010000001000000

Reverse sorted prefixes at k

Let u_i be the number of 0s in y before i, i.e. $u_i = i - \sum_{j < i} y_j$ And c be the total number of 1s in y, i.e. $c = \sum y_j$ Then i maps to u_i if $y_i = 0$, and $c + i - u_i$ if $y_i = 1$.

New data structure for fast matching Positional Burrows-Wheeler Transform (PBWT)

010010101000000111011100100100000000000	0000000110110010000
01001001011011011001111100010101000010010000	1001000001100011110
61131311000100001001110010010101000010010	1001000100100100010
0100100100010001001110001210101000010010	1001000100100100010
0110010100001001001100100110001101000100011010	0100000100100010010
010001010100000100111110101010100000000	0100000100100010000
0110010100100110010000001010101000000010000	0100000100100010010
1100010100010011000111110001010100001001000110000	0100000010101000010
615310110001000010011000010010101001001000100010000	1000011100100010000
011001010111000010100011010100010000000	0000100001100010000
0110018101100000101011110101010010010000011010000	0000100001100010010
01100101000100010011100100110100000000	1000001100000100010
0100100100100100100100100101010100001001000110000	1000101100100000010
01100101000101011001111100010101000010010001100010000	1000101100100000010
61001001011011001001111100010101111100000	0000100010110000110
010010010110000010000000010101010101000110000	0000100010110000111
0000010100100011100111111001000100110001000110000	0000000110100010000
010010010110110011100100100000000000000	0100000110110010010
0100010100010001001110010011010001000100011010	1000000100100000010
010010011010001110010010101010000100100	1010000010101000000

Reverse sorted prefixes at k

Matches are adjacent in the sort order Analogous to BWT used by BWA, BowTie etc. for sequence matching

Updating sort order is linear time

$y^{k}[k] = y^{k+1}[k+1]$

Reverse sorted prefixes at k

Let u_i be the number of 0s in y before i, i.e. $u_i = i - \sum_{j < i} y_j$ And c be the total number of 1s in y, i.e. $c = \sum y_j$ Then i maps to u_i if $y_i = 0$, and $c + i - u_i$ if $y_i = 1$.

Data compression – run length encoding

- Encode runs in bytes using
 - I bit for the value
 - 2 bits select run length units: 1 or 64 or 2048
 - -5(6) bits give number of units
- Simulate 100k sequences of length 20Mbp with ARG simulator MaCS (Chen et al. 2009)
 - 370,264 sites (one per 54bp): 37GB raw output
 - gzip compresses to 1.02GB (~35x compression)
 - PBWT compresses to 7.7MB (~4800x compression)
 - Native order run length encodes to ~2GB

Updating sort order is linear time

$y^{k}[k] = y^{k+1}[k+1]$

i:1:1:1:1:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:	
--	--

Reverse sorted prefixes at k

Let u_i be the number of 0s in y before i, i.e. $u_i = i - \sum_{j < i} y_j$ And c be the total number of 1s in y, i.e. $c = \sum y_j$ Then i maps to u_i if $y_i = 0$, and $c + i - u_i$ if $y_i = 1$.

Data compression – run length encoding

- Encode runs in bytes using
 - I bit for the value
 - 2 bits select run length units: 1 or 64 or 2048
 - -5(6) bits give number of units
- Simulate 100k sequences of length 20Mbp with ARG simulator MaCS (Chen et al. 2009)
 - 370,264 sites (one per 54bp): 37GB raw output
 - gzip compresses to 1.02GB (~35x compression)
 - PBWT compresses to 7.7MB (~4800x compression)
 - Native order run length encodes to ~2GB

Compression performance

Simulated data subsets

	1000	2000	5000	10000	20000	50000	100000
PBWT	1685629	1956360	2783732	3372188	4145516	5688290	7697194
haps.gz	10515008	21340464	53246970	105558782	209332249	517432833	1024614062
factor	6.2	10.9	19.1	31.3	50.5	91.0	133.1
bytes/site	4.6	5.3	7.5	9.1	11.2	15.4	20.8

"Real" data: 1000 Genomes phase1 chromosome 1 2184 chromosomes, 3007196 sites PBWT 51186641 gzip 302883517 factor 5.9 Maximal matches of new sequences to a reference panel

- Update rule the same as for sort update
- Option I: build indexes on top of PBWT
 - Very fast, effectively independent of the size of the reference panel so O(N) time

– Quite memory hungry, ~13NM bytes

 Option 2: match a batch of new sequences as you pass once through the PBWT

- O(NM) time, but very memory efficient

Data compression – run length encoding

- Encode runs in bytes using
 - I bit for the value
 - 2 bits select run length units: 1 or 64 or 2048
 - 5(6) bits give number of units
- Simulate 100k sequences of length 20Mbp with ARG simulator MaCS (Chen et al. 2009)
 - 370,264 sites (one per 54bp): 37GB raw output
 - gzip compresses to 1.02GB (~35x compression)
 - PBWT compresses to 7.7MB (~4800x compression)
 - Native order run length encodes to ~2GB

Updating sort order is linear time

$y^{k}[k] = y^{k+1}[k+1]$

<i>i</i> 110111601621006000000000000000000000000
--

Reverse sorted prefixes at k

Let u_i be the number of 0s in y before i, i.e. $u_i = i - \sum_{j < i} y_j$ And c be the total number of 1s in y, i.e. $c = \sum y_j$ Then i maps to u_i if $y_i = 0$, and $c + i - u_i$ if $y_i = 1$.

Data compression – run length encoding

- Encode runs in bytes using
 - I bit for the value
 - 2 bits select run length units: 1 or 64 or 2048
 - -5(6) bits give number of units
- Simulate 100k sequences of length 20Mbp with ARG simulator MaCS (Chen et al. 2009)
 - 370,264 sites (one per 54bp): 37GB raw output
 - gzip compresses to 1.02GB (~35x compression)
 - PBWT compresses to 7.7MB (~4800x compression)
 - Native order run length encodes to ~2GB

Compression performance

Simulated data subsets

	1000	2000	5000	10000	20000	50000	100000
PBWT	1685629	1956360	2783732	3372188	4145516	5688290	7697194
haps.gz	10515008	21340464	53246970	105558782	209332249	517432833	1024614062
factor	6.2	10.9	19.1	31.3	50.5	91.0	133.1
bytes/site	4.6	5.3	7.5	9.1	11.2	15.4	20.8

"Real" data: 1000 Genomes phase I chromosome I 2184 chromosomes, 3007196 sites PBWT 51186641 gzip 302883517 factor 5.9 Maximal matches of new sequences to a reference panel

- Update rule the same as for sort update
- Option I: build indexes on top of PBWT
 - Very fast, effectively independent of the size of the reference panel so O(N) time
 - Quite memory hungry, ~13NM bytes
- Option 2: match a batch of new sequences as you pass once through the PBWT

- O(NM) time, but very memory efficient

Time to match 1000 new sequences

Reference panel size	1,000	2,000	5,000	10,000	20,000	50,000
Naïve	52.1	103.8	258.9	519.2	1035.5	2582.6
Indexed	0.9u	0.9u	0.9u	0.9u	1.1u	1.7u
	0.1s	0.1s	0.1s	0.2s	0.5s	15s
Batch	2.3u	2.5u	3.5u	4.8u	6.8u	12.1u
	0.1s	0.1s	0.1s	0.1s	0.1s	0.1s

The reference panel here is pseudo-genotype array data, made of 10% of sites with MAF > 0.05 from the full sequence simulation.

The naïve method compares each sequence to each previous sequence, efficiently.

What about inference?

Prediction is closely related to compression

- Consider a generative model for y given d
- e.g. Markov given by $p(y_{i+1}|y_i, d_i)$
- Iterate to generate whole sequence sets

Imputation (very preliminary)

- Empirically $p(y_{i+1} \neq y_i | d_i) \approx e^{-\alpha \beta d}$
 - Expected given $d \sim$ Gumbel extreme value

25 mins on Mac air – results a bit worse than using IMPUTE

What about inference?

Prediction is closely related to compression

- Consider a generative model for y given d
- e.g. Markov given by $p(y_{i+1}|y_i, d_i)$
- Iterate to generate whole sequence sets

Imputation (very preliminary)

- Empirically $p(y_{i+1} \neq y_i | d_i) \approx e^{-\alpha \beta d}$
 - Expected given $d \sim$ Gumbel extreme value

25 mins on Mac air – results a bit worse than using IMPUTE

Alternative model: tree defined by d_i ?

- Potentially attractive relationship to ARG
- But data not consistent with tree in hard form
 Sample trees consistent with data weighting via d_i

Imputation (very preliminary)

- Empirically $p(y_{i+1} \neq y_i | d_i) \approx e^{-\alpha \beta d}$
 - Expected given $d \sim$ Gumbel extreme value
- Imputation under Markov model is local, so very fast

25 mins on Mac air – results a bit worse than using IMPUTE

Alternative model: tree defined by d_i ?

- Potentially attractive relationship to ARG
- But data not consistent with tree in hard form
 Sample trees consistent with data weighting via d_i

Back to the raw data BW methods help there too

- Collect shotgun sequencing reads
 - Random fragments from the whole genome
 - Can be enriched e.g. for exome
- Map the reads to the reference genome
 - Potential problems in repetitive areas
 - Potential alignment problems
- Detect variants based on the multiple alignment of reads
 - Statistical issues allowing for errors and sampling

Many modern mappers (e.g. bwa) use the standard Burrows-Wheeler Transform Non-unique match is an *interval* in Suffix Array

mississippi

SA[i] 1

11

- 11
- i\$ 1 10
- ippi\$
- issippi\$ ississippi\$
- 2 7 3 4 4 1 5 0 mississippi\$
- 6 7 8 9 pi\$
 - 8 ppi\$ 6 sippi\$
- 9 sissippi\$ 3 10
 - 5 ssippi\$ ssissippi\$ 2

L(si)=8, U(si)=10

Many modern mappers (e.g. bwa) use the standard Burrows-Wheeler Transform Non-unique match is an *interval* in Suffix Array

i SA[i]

mississippi

11 10 i\$ 2 7 ippi\$ 3 issippi\$ 4 4 1 ississippi\$ 5 mississippi\$ 0 6 9 pi\$ 7 8 ppi\$ 8 sippi\$ 6 sissippi\$ 9 3 ssippi\$ 10 5 ssissippi\$ 2

L(si)=8, U(si)=10

FM approach to matching: update L() and U() as you extend the search string

L()=0, U()=12 L(i)=1, U(i)=5 L(si)=8, U(si)=10

Constant time update gives O(M) search

Update uses FM-index Ferragina and Manzini 2000

mississippi

i SA[i]

- 11 i \$ 0
- 1 10 pi\$ 2 7 sippi\$
- 3 4 sissippi\$
- 4 1 mississippi\$
- 5 0 \$ mississippi\$
- 6 9 ppi\$
- 7 8 ippi\$ 8
- 6 s sippi\$ 9
 - 3 ssissippi\$
- 10 5 issippi\$ 11
 - 2 ississippi\$
 - BW[i]

L(aS) = C[a] + P[a, L(S)]U(aS) = C[a] + P[a,U(S)]

Where

C[a] is the number of letters less than a in the target string XP[a,i] is the number of times a occurs in BW[] for j<i BW[i] = X[SA[i]-1] is the Burrows-Wheeler transform

Errors due to mapping problems

Rare, population specific "SNPs" are clustered near centromere Many of these are likely to be artefacts, e.g. $\sim 1\%$ of the total

Adam Auton

Errors due to alignment at indels

 Control using local alignment uncertainty (BAQ: Li Heng), realignment, reassembly ... We are mapping to the wrong reference! Genetic variation by assembly

- Reference free variation detection
 - De novo mutations by comparing child to parents
 - Somatic cancer mutations by comparing tumour to normal
 - Population variation by identifying segregating sequence
 - Individual variation by comparing to reference
- Could assemble first then compare contig sets
 - Time consuming
- We only want to assemble the *differences* between the samples

Genetic variation by assembly

Find unique reads/k-mers, then *locally* construct the string graph around reads containing these k-mers

Evaluate evidence for haplotypes with Dindel (Albers et al. 2010) Bayesian methods

Two yeast strains co-assembled

Two yeast strains co-assembled

Example from 1000 Genomes: 4bp MNP

20 16240965 . TCTC CAAT 120 PASS AF=0.31894;NumReads=1107;VarDP=43 NB: only 3 reads in BAM: 43 reads in assembly

Using BWT/FM index for assembly

- The FM-Index of the reads is closely related to an assembly graph
 - It efficiently encodes all 1 base extensions of a k-mer
 - It can compute non-transitive overlap structure of the reads and hence string graph unitigs in O(N) time
 - Also can derive all de Bruijn graphs for k up to read length
- SGA assembler (Jared Simpson)
 - Compression of read BWT vastly reduces memory usage

"Efficient de novo assembly of large genomes using compressed data structures", Simpson and Durbin, 2012

 Open question: is Myers string graph the same as de Bruijn graph after perfect read threading?

Final big question

- Can we merge PBWT and BWT assembly?
- Build a model from all existing *primary* data to use efficiently for interpreting new data
 - Use ML techniques, perhaps on probabilistic model capturing genetic structure
- Very large distributed data sets (PB now)
 The more people, the more information

Is anyone interested to help? Collaborators, postdocs....

• Of course, there are lots of other big data machine learning problems in genomics

Acknowledgements

Andrew Brown, Milan Malinsky, Stephan Schiffels, Vladimir Shchur, Vagheesh Narasimhan, Zhihao Ding, Yasin Memari, *Jared Simpson, Heng Li*

sanger

wellcome trust

Thomas Keane, Sendu Bala, Petr Danecek, Shane McCarthy, core sequencing teams RARE GENETIC VARIANTS IN PEALTH AND LIDEADE

1000 Genome

A Deep Catalog of Human Genetic

210k

Variation

BIG & QUIC: Sparse Inverse Covariance Estimation for a Million Variables

Cho-Jui Hsieh The University of Texas at Austin

> NIPS Lake Tahoe, Nevada Dec 8, 2013

Joint work with M. Sustik, I. Dhillon, P. Ravikumar and R. Poldrack

Cho-Jui Hsieh The University of Texas at Austin BIG & QUIC: Sparse Inverse Covariance Estimation

(6) (3) (3)

FMRI Brain Analysis

Goal: Reveal functional connections between regions of the brain. (Sun et al, 2009; Smith et al, 2011; Varoquaux et al, 2010; Ng et al, 2011)
p = 228, 483 voxels.

BIG & QUIC: Sparse Inverse Covariance Estimation for a Million Variables

Cho-Jui Hsieh The University of Texas at Austin

> NIPS Lake Tahoe, Nevada Dec 8, 2013

Joint work with M. Sustik, I. Dhillon, P. Ravikumar and R. Poldrack

Cho-Jui Hsieh The University of Texas at Austin BIG & QUIC: Sparse Inverse Covariance Estimation

((())) (()) (())

FMRI Brain Analysis

Goal: Reveal functional connections between regions of the brain. (Sun et al, 2009; Smith et al, 2011; Varoquaux et al, 2010; Ng et al, 2011)
p = 228, 483 voxels.

Other Applications

Gene regulatory network discovery:

(Schafer & Strimmer 2005; Andrei & Kendziorski 2009; Menendez et al, 2010; Yin and Li, 2011)

- Financial Data Analysis:
 - Model dependencies in multivariate time series (Xuan & Murphy, 2007).
 - Sparse high dimensional models in economics (Fan et al, 2011).
- Social Network Analysis / Web data:
 - Model co-authorship networks (Goldenberg & Moore, 2005).
 - Model item-item similarity for recommender system(Agarwal et al, 2011).
- Climate Data Analysis (Chen et al., 2010).
- Signal Processing (Zhang & Fung, 2013).
- Anomaly Detection (Ide et al, 2009).

(2) (2) (3)

Inverse Covariance Estimation

Given: n i.i.d. samples {y₁,..., y_n}, y_i ∈ R^p, y_i ~ N(μ, Σ),
An example – Chain graph: y_i = 0.5y_{i-1} + N(0, 1)

 $\Sigma = \begin{pmatrix} 1.33 & 0.67 & 0.33 & 0.17 \\ 0.67 & 1.33 & 0.67 & 0.33 \\ 0.33 & 0.67 & 1.33 & 0.67 \\ 0.17 & 0.33 & 0.67 & 1.33 \end{pmatrix}, \ \Sigma^{-1} = \begin{pmatrix} 1 & -0.5 & 0 & 0 \\ -0.5 & 1.25 & -0.5 & 0 \\ 0 & -0.5 & 1.25 & -0.5 \\ 0 & 0 & -0.5 & 1 \end{pmatrix}$

• Conditional independence is reflected as zeros in Σ^{-1} :

 $\Sigma_{ii}^{-1} = 0 \Leftrightarrow y_i$ and y_j are conditionally independent given other variables.

(四)(何)(注)(注) 注

L1-regularized inverse covariance selection

- Goal: Estimate the inverse covariance matrix in the high dimensional setting: p(# variables) >> n(# samples)
- Add l_1 regularization a sparse inverse covriance matrix is preferred.
- The l₁-regularized Maximum Likelihood Estimator:

$$\Sigma^{-1} = \arg\min_{X \succ 0} \left\{ \underbrace{-\log\det X + \operatorname{tr}(SX)}_{\text{negative log likelihood}} + \lambda \|X\|_1 \right\} = \arg\min_{X \succ 0} f(X),$$

where $||X||_1 = \sum_{i,j=1}^n |X_{ij}|$.

Scalability

- Block coordinate ascent (Banerjee et al, 2007), Graphical Lasso (Friedman et al, 2007).
- VSM, PSM, SINCO, IPM, PQN, ALM (2008-2010).
 ALM solves p = 1000 in 300 secs.
- QUIC: Newton type method (Hsieh et al, 2011)

Solves p = 1000 in 10 secs, p = 10,000 in half hour.

- All the above methods require O(p²) memory, cannot solve problems with p > 30,000.
- Need for scalability: FMRI dataset has more than 220,000 variables

Scalability

- Block coordinate ascent (Banerjee et al, 2007), Graphical Lasso (Friedman et al, 2007).
- VSM, PSM, SINCO, IPM, PQN, ALM (2008-2010).
 ALM solves p = 1000 in 300 secs.
- QUIC: Newton type method (Hsieh et al, 2011)

Solves p = 1000 in 10 secs, p = 10,000 in half hour.

- All the above methods require O(p²) memory, cannot solve problems with p > 30,000.
- Need for scalability: FMRI dataset has more than 220,000 variables
- BIGQUIC (2013):

p = 1,000,000 (1 trillion parameters) in 22.9 hrs with 32 GBytes memory (using a single machine with 32 cores).

(1) (E) (E)

Our innovations

- Main Ingredients:
 - Second-order Newton-like method (QUIC)
 - \rightarrow quadratic convergence rate.
 - ② Memory-efficient scheme using block coordinate descent (BigQUIC) → scale to one million variables.
 - Approximate Hessian computation (BigQUIC)
 - \rightarrow super-linear convergence rate.

QUIC – proximal Newton method

• Split smooth and non-smooth terms: f(X) = g(X) + h(X), where

 $g(X) = -\log \det X + \operatorname{tr}(SX) \text{ and } h(X) = \lambda ||X||_1.$

• Form quadratic approximation for $g(X_t + \Delta)$:

 $\bar{g}_{X_t}(\Delta) = \operatorname{tr}((S - W_t)\Delta) + (1/2)\operatorname{vec}(\Delta)^T(W_t \otimes W_t)\operatorname{vec}(\Delta) - \log \det X_t + \operatorname{tr}(SX_t),$

where $W_t = (X_t)^{-1} = \frac{\partial}{\partial X} \log \det(X) |_{X = X_t}$.

Define the generalized Newton direction:

$$D_t = \arg\min_{\Delta} \bar{g}_{X_t}(\Delta) + \lambda \|X_t + \Delta\|_1.$$

イロン (月) (日) (日) 日 うなひ

Solve by coordinate descent (Hsieh et al, 2011) or other methods (Olsen et al, 2012).

Coordinate Descent Updates

Use coordinate descent to solve:

$$\arg\min_{D} \{\bar{g}_X(D) + \lambda \| X + D \|_1\}.$$

Closed form solution for each coordinate descent update:

$$D_{ij} \leftarrow -c + S(c - b/a, \lambda/a),$$

where $S(z, r) = \operatorname{sign}(z) \max\{|z| - r, 0\}$ is the soft-thresholding function, $a = W_{ij}^2 + W_{ii}W_{jj}$, $b = S_{ij} - W_{ij} + \mathbf{w}_i^T D\mathbf{w}_j$, and $c = X_{ij} + D_{ij}$.

 The main cost is in computing w^T_i Dw_j, where w_i, w_j are *i*-th and *j*-th columns of W = X⁻¹.

Algorithm

QUIC: QUadratic approximation for sparse Inverse Covariance estimation

Input: Empirical covariance matrix *S*, scalar λ , initial *X*₀. For t = 0, 1, ...

- **()** Variable selection: select a *free* set of $m \ll p^2$ variables.
- Ose coordinate descent to find descent direction:
 - $D_t = \arg \min_{\Delta} f_{X_t}(X_t + \Delta)$ over set of free variables, (A Lasso problem.)
- 3 Line Search: use an Armijo-rule based step-size selection to get α s.t. $X_{t+1} = X_t + \alpha D_t$ is
 - positive definite,
 - satisfies a sufficient decrease condition f(X_t + αD_t) ≤ f(X_t) + ασΔ_t.

(口)(何)(注)(注) 注

(Cholesky factorization of $X_t + \alpha D_t$)

Difficulties in Scaling QUIC

Consider the case that $p \approx 1$ million, $m = ||X_t||_0 \approx 50$ million.

- Coordinate descent requires X_t and $W = X_t^{-1}$,
 - needs O(p²) storage
 - needs O(mp) computation per sweep, where $m = ||X_t||_0$
- Line search (compute determinant using Cholesky factorization).
 - needs $O(p^2)$ storage
 - needs O(p³) computation

- Assume we can store *M* columns of *W* in memory.
- Coordinate descent update (i, j): compute $\mathbf{w}_i^T D \mathbf{w}_j$.
- If w_i, w_j are not in memory: recompute by CG:

 $X\mathbf{w}_i = \mathbf{e}_i$: $O(T_{CG})$ time.

 w_1, w_2, w_3, w_4 stored in memory.

イボン・コン・イヨン

296

-

Cache hit, do not need to recompute w_i, w_j .

Update (1,4) Need w₍₁₎, w₍₄₎

(M=4)

向入 イヨン イヨン

Cache miss, recompute w_i, w_j .

Update (6,9) Need w₍₆₎, w₍₉₎

(F) (E) (E)

ARC

Coordinate Updates – ideal case

- Want to find update sequence that minimizes number of cache misses: probably NP Hard.
- Our strategy: update variables block by block.
- The ideal case: there exists a partition {S₁,..., S_k} such that all free sets are in diagonal blocks:

Free Set

Only requires p column evaluations.

General case: block diagonal + sparse

If the block partition is not perfect:

extra column computations can be characterized by boundary nodes.
Given a partition {S₁,..., S_k}, we define boundary nodes as

 $B(S_q) \equiv \{j \mid j \in S_q \text{ and } \exists i \in S_z, z \neq q \text{ s.t. } F_{ij} = 1\},\$

where F is adjacency matrix of the free set.

121112

Graph Clustering Algorithm

The number of columns to be computed in one sweep is

$$p+\sum_{q}|B(S_{q})|.$$

Can be upper bounded by

$$p+\sum_{q}|B(S_q)|\leq p+\sum_{z\neq q}\sum_{i\in S_z,j\in S_q}F_{ij}.$$

- Use Graph Clustering (METIS or Graclus) to find the partition.
- Example: on fMRI dataset (p = 0.228 million) with 20 blocks, random partition: need 1.6 million column computations. graph clustering: need 0.237 million column computations.

BIGQUIC

Block co-ordinate descent with clustering,

- needs $O(p^2) \rightarrow O(m + p^2/k)$ storage
- needs $O(mp) \rightarrow O(mp)$ computation per sweep, where $m = ||X_t||_0$

Line search (compute determinant of a big sparse matrix).

- needs $O(p^2)$ storage
- needs O(p³) computation

4 TH 1 1 TH 1

Line Search

- Given sparse matrix $A = X_t + \alpha D$, we need to
 - Check its positive definiteness.
 - Compute log det(A).
- Our approach computes log det(A) in O(mp) time.
- Cholesky factorization in QUIC requires $O(p^3)$ computation.
- If $A = \begin{pmatrix} a & b' \\ b & C \end{pmatrix}$,
 - $det(A) = det(C)(a \mathbf{b}^T C^{-1}\mathbf{b})$
 - A is positive definite iff C is positive definite and $(a \mathbf{b}^T C^{-1} \mathbf{b}) > 0$.
- C is sparse, so can compute C⁻¹b using Conjugate Gradient (CG).
- Time complexity: $T_{CG} = O(mT)$, where T is number of CG iterations.

(口)(何)(日)(日)

BIGQUIC

Block co-ordinate descent with clustering,

- needs $O(p^2) \rightarrow O(m + p^2/k)$ storage
- needs $O(mp) \rightarrow O(mp)$ computation per sweep, where $m = ||X_t||_0$

Line search (compute determinant of a big sparse matrix).

- needs $O(p^2) \rightarrow O(p)$ storage
- needs O(p³) → O(mp) computation

Algorithm

BIGQUIC

Input: Samples Y, scalar λ , initial X_0 .

For t = 0, 1, ...

- **()** Variable selection: select a *free* set of $m \ll p^2$ variables.
- O Construct a partition by clustering.
- Run block coordinate descent to find descent direction:
 - $D_t = \arg \min_{\Delta} \overline{f}_{X_t}(X_t + \Delta)$ over set of free variables.
- Line Search: use an Armijo-rule based step-size selection to get α s.t. X_{t+1} = X_t + αD_t is
 - positive definite,
 - satisfies a sufficient decrease condition $f(X_t + \alpha D_t) \leq f(X_t) + \alpha \sigma \Delta_t$.

(四)(何)(注)(注) 注

(Schur complement with conjugate gradient method.)

BIGQUIC Convergence Analysis

- Recall $W = X^{-1}$.
- When each \mathbf{w}_i is computed by CG $(X\mathbf{w}_i = \mathbf{e}_i)$:
 - The gradient ∇_{ij}g(X) = S_{ij} − W_{ij} on free set can be computed once and stored in memory.
 - Hessian (w^T_i Dw_j in coordinate updates) needs to be repeatedly computed.
- To reduce the time overhead, Hessian should be computed approximately.
- Theorem: the convergence rate is quadratic if ||Xŵ_i − e_i|| = O(||∇^S f(X_t)||), where

$$\nabla_{ij}^{S} f(X) = \begin{cases} \nabla_{ij} g(X) + \operatorname{sign}(X_{ij}) \lambda & \text{if } X_{ij} \neq 0, \\ \operatorname{sign}(\nabla_{ij} g(X)) \max(|\nabla_{ij} g(X)| - \lambda, 0) & \text{if } X_{ij} = 0. \end{cases}$$

(#) (2) (3)

Experimental results (scalability)

Figure: BIGQUIC can solve one million dimensional problems.

(口) (何) (三) (三)

Experimental results

BIGQUIC is faster even for medium size problems.

Figure: Comparison on FMRI data with a p = 20000 subset (maximum dimension that previous methods can handle).

Results on FMRI dataset

- 228,483 voxels, 518 time points.
- $\lambda = 0.6 \implies$ average degree 8, BIGQUIC took 5 hours.
 - $\lambda = 0.5 \Longrightarrow$ average degree 38, BIGQUIC took 21 hours.
- Findings:
 - Voxels with large degree were generally found in the gray matter.
 - Can detect meaningful brain modules by modularity clustering.

(何) (三) (三)

Conclusions

- BIGQUIC: Memory efficient quadratic approximation method for sparse inverse covariance estimation.
- Our contributions:
 - Computing Newton direction:
 - Coordinate descent
 → block coordinate descent with clustering.
 - Memory complexity: $O(p^2) \rightarrow O(m + p^2/k)$.
 - Time complexity: O(mp) → O(mp).
 - Line search (computing determinant of a big sparse matrix)
 - Cholesky factorization

 Schur complement with conjugate gradient method.

(四)(冊)(三)(三)

- Memory complexity: O(p²) → O(p).
- Time complexity: $O(p^3) \rightarrow O(mp)$.

Inexact Hessian computation with super-linear convergence.

Reterences

[1] C. J. Hsieh, M. Sustik, I. S. Dhillon, P. Ravikumar, and R. Poldrack. BIG & QUIC: Sparse inverse covariance estimation for a million variables. NIPS (oral presentation), 2013. [2] C. J. Hsieh, M. Sustik, I. S. Dhillon, and P. Ravikumar. Sparse Inverse Covariance Matrix Estimation using Quadratic Approximation. NIPS, 2011. [3] C. J. Hsieh, I. S. Dhillon, P. Ravikumar, A. Banerjee. A Divide-and-Conquer Procedure for Sparse Inverse Covariance Estimation, NIPS, 2012. [4] P. A. Olsen, F. Oztoprak, J. Nocedal, and S. J. Rennie. Newton-Like Methods for Sparse Inverse Covariance Estimation. Optimization Online, 2012. [5] O. Banerjee, L. El Ghaoui, and A. d'Aspremont Model Selection Through Sparse Maximum Likelihood Estimation for Multivariate Gaussian or Binary Data. JMLR, 2008. [6] J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 2008. [7] L. Li and K.-C. Toh. An inexact interior point method for I1-reguarlized sparse covariance selection. Mathematical Programming Computation, 2010. [8] K. Scheinberg, S. Ma, and D. Glodfarb. Sparse inverse covariance selection via alternating linearization methods. NIPS, 2010. [9] K. Scheinberg and I. Rish. Learning sparse Gaussian Markov networks using a greedy

coordinate ascent approach. Machine Learning and Knowledge Discovery in Databases, 2010.

(D) (#) (E) (E) E

200