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Personalized, precision, medicine
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harness previously-unmeasured function and behavior
to fuel personalized and evidence-producing care



A patient with arthritis




Understanding fluctuations in RA disease activity
(D. Orange, R. Darnell, et al)

80% of RA patients experience relapsing-remitting course

» unpredictable flares limit patient function, work productivity

Treatment often has unwanted side effects (short courses of steroids: insomnia,
hypertension, glucose intalerance, ..)

“biologic agents” (TNF inhibitors) only make 60% of patients >20% better; 40%, >50%
better; 15%, >70% better

Early diagnosis and treatment leads to improved outcomes
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Q&D QA

i Participant self-care Clinical care
~ How is this new medication How is the patient responding
| working for me? to new care plan?




Profound potential to rephrase ‘does it work?’
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Using bioinformatics to understand fluctuations in RA
disease activity (Orange, Darnell, et al)

Frequent blood samples taken and mailed in to support analysis pre, during and
after flare

mHealth:

— make such studies practical
— support adaptive sampling (sample more when signs of flare begin)?

— support personalized management based on mechanism discovery
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Data Processing

(transform, cluster, infer, viz)
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(transform, cluster, infer, viz)
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uftimate goal: create scalable tools for PCP and clinic based care
that supports precision, personalization, and continuity of care in:

* RA, Lupus, Crohns, Asthma, MS * Depression, ADHD, insomnig,

* Hospital discharge, Surgical post-traumatic stress disorder
recovery » Integrative medicine effectiveness

= Pain management, Chronic * Behavior change (individual,

fatigue, Migraines family , community)



Passively-recorded activity and location traces
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Accelerometry GPS Data Ambient Wi-Fi Signals
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Photo: Marshall Astor, wWww (clinical decision making/action) @ 0 v r e

ultimate goal: create scalable tools for PCP and clinic based care
that supports precision, personalization, and continuity of care in:

* RA, Lupus, Crohns, Asthma, MS * Depression, ADHD, insomnig,

* Hospital discharge, Surgical post-traumatic stress disorder
recovery » Integrative medicine effectiveness

= Pain management, Chronic * Behavior change (individual,

fatigue, Migraines family , community)
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Data Processing

{transform, cluster, infer, viz)
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(transform, cluster, infer, viz)
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ultimate goal: create scalable tools for PCP and clinic based care
that supports precision, personalization, and continuity of care in:

* RA, Lupus, Crohns, Asthma, MS * Depression, ADHD, insomnia,

» Hospital discharge, Surgical post-traumatic stress disorder
recovery * Integrative medicine effectiveness

» Pain management, Chronic » Behavior change (individual,

fatigue, Migraines family , community)






Passively-recorded activity and location traces
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Accelerometry GPS Data Ambient Wi-Fi Signals



mobile apps data




Smart self report/EMA:
Photographic Affect Meter, PAM (Pollak et al)

Photo Select

Touch the photo the best captures
how you feel right now:




Rich communication and activity data: The Ginger.io Platform

Continuous & Passive

g : Check Engine Light
m : dentify at—r

Protecting Privacy
G s HIPPA

555&55 ntervention




Data driven tools for patients: MoodRhytm{TM) (Choudhury et al)
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And yes...“Real Sensor” streams too




Beyond mobile...
Leveraging digital traces from diverse consumer services
Your rows of their matrices...

HOUSEHOLD CABLEBOX MOBILE CARRIERS

= Diumnal rhythms *Sodial fcommun
= Appliance use patterns
*Mood
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*Cognitive state State of mind
sIndicator/influencer *Topic/concern

GAMES/MUSIC/VIDEO



Example: consumer transaction patterns as small data

The goal is to transform ...into a consumption model (a ...on which descriptive statistics
purchasing patterns... categorical distribution of can be computed.

restaurant, fast food, drug store,

etc. purchases)...

EFER Y

L [Nl ot

Sept
Since we have a progression of ...we can examine how the ...and plot the statistics for each
spending patterns over time... resulting distributions time frame, resulting in a time

change... series which can then be
correlated against other time
series.



Example: communication language patterns as small data

The goal is to transform text ...into a “bag of words” model (a
communication... categorical distribution)...

Sept Oct Sept Oct Nov
Since we have a progression of ..we can examine how the
emails over time... resulting distributions

change...

F. Alguaddoomi

________

...on which descriptive statistics
can be computed.

/,\//

...and plot the statistics for each
time frame, resulting in a time
series which can then be
correlated against other time
series.



no one data stream tells the story

its about integration, fusion, and sense-making

Open mHeath Case Study Open mHeath Case Study
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promote modularity, data integration, and software reusability

data interoperation, e.g..
from clouds

visualization

Open mHealth

disss dbSS ecosystem

% Open mHealth_ mobile integrated 'solutions/systems’ Open mHealth



Eventual integration w/ clinical data sources and workflows via EHR

data from the EHR

Atomic data

i elements for
Open mHealth

modules (e.g.,

Exported ITlEdS}
Document

data into the EHR

Data from
multipie
sources made
meaningful and
actionable

' Ida Sim, MD, PhD, UCSF



Key challenge 1: making “clinical sense” out of raw n=me data

QPD®

174 h 55 min 0 min 0 min




Transform raw data streams into behavioral biomarkers:
specific behavioral traits to measure progress of disease and treatment

rrst:-lte classification
ssedentary/ambulatory
*at home/work
*app analytics {games, media...)
\*communication y




Transform raw data streams into behavioral biomarkers:
specific behavioral traits to measure progress of disease and treatment

" summarization i
*ambulatory/sedentary cumuiative and
durations,walking speed @ @
*sieep times, meal times
stime spent key locations, diameter of day 174h 55min Omin Omin
\_*social interaction j/
T )

rrst:.:te classification
ssedentary/ambulatory
eat home/work
*app analytics (games, media...)
\*communication y




Transform raw data streams into behavioral biomarkers:
specific behavioral traits to measure progress of disease and treatment

" behavioral biomarker
*individual’s patterns; relevance is
symptom and condition dependent
 ‘function, fatigue, pain, depression,
\insomnia, cognition, self-medication...

.

" summarization

*ambulatory/sedentary cumulative and
durations,walking speed

ssieep times, meal imes

time spent key locations, diameter of day

J

\_*social interaction
- ; -
state classification
ssedentary/ambulatory

sat home/work
*app analytics (games, media...)

L scommunication 3

Hours at home per day

p
-
‘ .

Woalking periods
> & min per day

| I

17.4h

DABD®

55 min min 0 min




Modular tools to identify, iterate, share

building blocks for behavioral biomarkers, sensemaking

Visualization

Lifestreams
Inference

Feature
Selection

Feature
Extraction

ohmage Personal
Data Streams

Lifestreams Visualization

Caorrelation Change Correlation .
Summary Detection Change Detection Pradichion
Pairwise Correlation : Factor Analysis
Analysis NEBoMRE Smerton (PCA, MRMR)
Temporal Aggregation Spatial Aggregation
Self-report ; : o Acoustic Features
Features Location Analysis:| | Acthity Feclmen (Voice/Non-voice)
Self-report Geolocation / WiFi Fingerprints / Acoustc Dl

(Lifestreams, Hsieh et al, Sensys 2013)

Hsieh, Tangmunarunkit, Ramanathan, et al



Key challenge 2: small data governance

e Each data source has shared/other origins
e Individual has control over their corpus of data streams to correlate, fuse
e App/service utility derives from lack of anonymity

e Selective sharing embodied in apps—-TMI works both ways in clinical domains
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Socio-technical architecture for small data:
individual as nexus of control



games,
media,
dating

Beyond ‘health’
Life

quantified
consumer

Health

Independent living transitions
Auto-immune/inflammatory disease
Phoiic pain: sndiaid apps
Mental health: depression, stress, ...

*Omics research

family

quantified
student



mpire: test-bed for small data and personal informatics

Liberate
the Data

Start doing — real people
creating & using micro-
- apps

Build a community ? ®

-
Catalyze app
development
Part
artners TIME WARNER
- CABLE =
# = I. :
— . Research

Veriyonwircless

=
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It’s not rocket science....

It’s pocket science



A Tech campus for the 21st century

A campus that embraces and embeds
external engagement

= Between technology user and
technology creator: co-innovation

= Connective media, Healthier
life, Built environment

= Between the academic and the
non-academic worlds

= Large and small businesses,
Startups, Government, Non-
profits

Goals and Vision for Cornell Tech NYCTECH






SCALABLE INFLUENCE ESTIMATION IN
CONTINUOUS-TIME DIFFUSION NETWORKS

Nan Dul

Joint work with Le Song !, Manuel Gomez Rodriguez? and Hongyuan Zha?

!Georgia Institute of Technology

2Max Planck Institute for Intelligent Systems




MOTIVATION

e Diffusions of news, events, and virus, take place over social and
information networks.

N. Du, L. Sonc, M. Robricuez, H. ZHA CoNTINEST




MOTIVATION

@ Diffusions of news, events, and virus, take place over social and
information networks.

@ Influence Estimation : how to predict how many people will follow the
fashion lead by the influential users ?

N. Du, L. Song, M. Robmicuez, H. ZEA CoNTINEST



MOTIVATION

@ Diffusions of news, events, and virus, take place over social and
information networks.

@ Influence Estimation : how to predict how many people will follow the
fashion lead by the influential users ?

@ Influence Maximization : how to identify such influential users to
trigger the largest expected number of follow-ups 7
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MOTIVATION

e Diffusions of news, events, and virus, take place over social and
information networks.

@ Influence Estimation : how to predict how many people will follow the
fashion lead by the influential users ?

® Influence Maximization : how to identify such influential users to
trigger the largest expected number of follow-ups ?

@ [ime-Sensitive : influence most users before time 7.
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MOTIVATION

e Diffusions of news, events, and virus, take place over social and
information networks.

@ Influence Estimation : how to predict how many people will follow the
fashion lead by the influential users ?

e Influence Maximization : how to identify such influential users to
trigger the largest expected number of follow-ups ?

@ [ime-Sensitive : influence most users before time 7.

@ Scalability : deal with large networks (millions of nodes) in practice.

tlme-senﬁtive Miral marketing

N. Du, L. Sonc, M. Robricuez, H. ZEA CoNTmNEST




OUTLINE

1 Continuous-time diffusion process.

N. Du, L. Sonc, M. Robricuez, H. ZHA CoNTINEST




OUTLINE

1 Continuous-time diffusion process.

influence estimation rfluence maxmization

N. Du, L. Sonc, M. RopmicuEz, H. ZHA CoNTINEST




OUTLINE

1 Continuous-time diffusion process.

influence estimation nfluence maximization

3 Experimental evaluation with synthetic and real diffusion data.

N. Dwu, L. Sonc, M. Robricuez, H. ZEA CoNTmwEST




CONTINUOUS VS. DISCRETE TIME DIFFUSION IMODEL

@ Traditionally, diffusion has been modeled as discrete steps (or rounds).

@® infected () uninfected
i

round 1 round 3

N. Du, L. Sonc, M. RobricuEz, H. ZEA CoNTINEST



CONTINUOUS VS. DISCRETE TIME DIFFUSION M ODEL

e Traditionally, diffusion has been modeled as discrete steps (or rounds).
@® infected () uninfected

round 1 round 2 round 3

@ In reality, propagation does not go in rounds !

e how long is each round 7

@ how many rounds do we
need 7

N. Du, L. Sonc, M. Robricuez, H. ZHA CoNTINEST



CONTINUOUS-TIME INDEPENDENT CASCADE MODEL

@ Model mutually independent
transmission time

‘?}',' = t; == fj.

e Pairwise conditional density
( transmission function )

fii(tilt;) = fii(ti — ;).

@ A network with stochastic edge
weights.

e Infection time
t; = length of shortest path.

N. Dwu, L. Song, M. Ropbmacuez, H. ZHA CoNTIREST
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e
Transmission function
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Transmission function




ABSOLUTE INFECTION TIME VIEW

@ The influence of sources A by time T is

(A, T) :E[Z_

N. Du, L. Sonc, M. BRobricuEz, H. ZHA CoNTINEST



ABSOLUTE INFECTION TIME VIEW

@ The influence of sources A by time T is

o(A, T)=

e Infection probability

sn= [ [

N. Du, L. Sonc, M. Rooricuez, H. ZHA CoNTINEST



ABSOLUTE INFECTION TIME VIEW

@ The influence of sources A by time T is

(A, T)=E {Z I{t; < T} Zfev Pr{ti< T}

e Infection probability

Pr{t; < T} = f /—0 f yP (tl{tes,)) (erv ;)

o Need to integrate all possible configurations of cascaxdes where t; < T.

e No closed form solution for general heterogeneous transmission
function.

e Hard to approximate.

N. Du, L. Sonc, M. Robricuez, H. ZuA CoNTINEST



NEIGHBORHOOD SIZE ESTIMATION

@ Influence function

o(AT)=)  Pr{t<T}

@ No need to calculate Pr {t; < T} individually.

N. Du, L. Sonc, M. Rooricuez, H. ZeA CoNTINEST



NEIGHBORHOOD SIZE ESTIMATION

@ Influence function

oA, T)=) .

e

VPr{t; < T}

@ No need to calculate Pr{t; < T} individually.

N. Du, L. Sonc, M. HBobmicuEz, H. ZuA CoNTINEST



NEIGHBORHOOD SIZE ESTIMATION

@ Influence function

(A, T)=)

@ No need to calculate Pr {t; < T} individually.

Pr{t; < T}

ey

@ Given a set of {7}-’;}“:;}65, only care about

> HE < TH=IN({}, D= {i: 6 < T}

Sat -
e Set of infected nodes
U .\n""‘—‘ within distance T

influence sstsi@uun

N. Du, L. Sonc, M. Robricuez, H. ZHA CoNTINEST



NEIGHBORHOOD SIZE ESTIMATION

@ Sample n sets of G; ;= {in}u;}gg ~ HU,,-}EE fi(75)

N. Du, L. Sonc, M. RopricuEz, H. ZEA CoONTINEST



NEIGHBORHOOD SIZE ESTIMATION

° Sampte n sets of G,r = {7}1‘;}{;;}65 ~ HUJ)EE i‘:,'; Tj;)
@ Average the counts across n samples.

o(AT)=E Y I{t < T}

eV 1=2%

N. Du, L. Sonc, M. Rooricuez, H. ZHA CoNTINEST



NEIGHBORHOOD SIZE ESTIMATION

@ Sample n sets of G; := { }{j ek ™ H{)‘ EE
@ Average the counts across n samples.

o(AT)=E Y I{t<T}
~ % (Z:{t,; <T|G}+,... ,+Z:{f£ < TG,,})

=% =%

e To calculate I{t; < T|G,}, check whether length of shortest path
< T on each sampled network.

N. Dwu, L. Sonc, M. Ropbrmicuez, H. ZEA CoNTINEST



NEIGHBORHOOD SIZE ESTIMATION

® Sample n sets of G; := {7 }jnee ~ [liiee Gi(7i)
@ Average the counts across n samples.

o(A, T)=E [Z;Ev:{t" < T}]
~ % (‘Z:{r,- <TG}, ,+ ) I{t < TGn})

icVy =%

e To calculate I{t; < T|G,}, check whether length of shortest path
< T on each sampled network.

N. Du, L. Song, M. Robricuez, H. ZHA CoNTINEST



NEIGHBORHOOD SIZE ESTIMATION

@ Using shortest path is not scalable.

N. Du, L. Sonc, M. RobeicuEz, H. ZHA CoNTINEST



NEIGHBORHOOD SIZE ESTIMATION

@ Using shortest path is not scalable.

@ Influence Estimation of a single source j

o a(y},T)

e Compute all shortest paths from j to the other nodes.

N. Dwu, L. Song, M. Rooricuez, H. ZEA CoNTmwEST



NEIGHBORHOOD SIZE ESTIMATION

@ Using shortest path is not scalable.

@ Influence Estimation of a single source |

e a({},T)

e Compute all shortest paths from j to the other nodes.

@ Which source is the best 7
o Chose j with the largest o({j}. T)

e Try source j =0,...,[V| -1, O(|V?)

e Quadratic in network size

Can not deal with large networks !
I

N. Du, L. Sonc, M. Robricuez, H. ZHA CoNTmEsT



NEIGHBORHOOD SIZE ESTIMATION

@ Directly estimate the neighborhood size by Cohen’s algorithm |

N. Du, L. Sonc, M. Robmicuez, H. ZHA CoNTINEST



NEIGHBORHOOD SIZE ESTIMATION

@ Directly estimate the neighborhood size by Cohen’s algorithm !

assign exponential random label r; find the minimum label r.

® Draw m sets of i.i.d random labels {r“}; «~ e™"
I

N. Dwu, L. Sonc, M. Rooricuez, H. ZHA CoNTINEST




NEIGHBORHOOD SIZE ESTIMATION

@ Directly estimate the neighborhood size by Cohen’s algorithm !

assign exponential random label r; find the minimum label r.

® Draw m sets of i.i.d random labels {r“}]_; v~ e™".

e Find the minimum label {r?}_, Iwithin distance T by Cohen’s
algorithm in O(|£]).

N. Dwu, L. Sonc, M. Robricuez, H. ZHA CoNTmEST




NEIGHBORHOOD SIZE ESTIMATION

@ Directly estimate the neighborhood size by Cohen'’s algorithm !

assign exponential random labei r; find the minimum label r.

® Draw m sets of i.i.d random labels {r“}_; «~ e™"

e Find the minimum label {r”}7_, lwithin distance 7 by Cohen'’s
algorithm in O(|81).

¢ Estimate [N ({j}, T)| ® <= using the property of exponential

distribution.

N. Du, L. Sonc, M. HobmicuEz, H. ZuA CoNTINEST



MULTIPLE SOURCES

@ Multiple sources A

@ [ he overall least |label

- = Mijc A MiNjepn (i T) T

0% 0 L least labels

N. Du, L. Sonc, M. Rooricuez, H. ZHA CoNTINEST




OVERALL ALGORITHM CoONTINEST

1. Sample n sets of random transmission times

| ——— p if{j,i)ek (j.i)e€ B\ H
% n samples ‘/ ’

N. Dwu, L. Sonc, M. Rooricuez, H. ZHA CoNTINEST



OVERALL ALGORITHM CoNTINEST

1. Sample n sets of random transmission times

{ﬂf}}u.i)es o HU,E)ES fji(?’}‘i)

N. Du, L. Sonc, M. Robricuez, H. ZEA CoNTINEST



OVERALL ALGORITHM CoONTINEST

1. Sample n sets of random transmission times

{’T}’}}u,;)es .

3. Find the minimum label {r’}7_, within T using Cohen’s algorithm.

N. Dwu, L. Sonc, M. Robricuez, H. ZHA CoNTINEST



OVERALL ALGORITHM CoONTINEST

1. Sample n sets of random transmission times

e N 2L N
| — q ::? i U.I)f’:rf
n samples i/ !

2. Given a set of {7}!;-}0";)66, sample m sets of random labels

3. Find the minimum label {rf}/_within T using Cohen’s algorithm.

4. Estimate (A, T) by sample averages

o(AT)~ LT ((m -1/ Z0, )

N. Du, L. Sonc, M. Hobricuez, H. ZeEA CoNTINEST




OVERALL ALGORITHM CoONTINEST

THEOREM

Draw the following number of samples for the set of random transmission times

_, CN(T.1/m) - (2‘12;) ?

=2 —
€2

o

and for each set of random transmission times, draw m set of random [abels.
Then [6(A, T) —o(A, T)| < € uniformly for all A with | A| < C, with probability
at least 1 — 6.

N. Dwu, L. Sonc, M. Rooricuez, H. ZHA CoNTINEST



OVERALL ALGORITHM CONTINEST

THEOREM

Draw the following number of samples for the set of random transmission times

_, CN(T.1/m) 1oe (2 v) ?

= —
€2

)

and for each set of random transmission times, draw m set of random labels.
Then |6(A, T) —o(A, T)| < € uniformly for all A with |A| < C, with probability
at feast 1 — 6.

e Implications : influence at the longer time window 7 requires more
samples. I

@ In practice : large n = 10K allows small m = 5 to achieve good
performance.

N. Du, L. Sonc, M. Robrmicuez, H. ZEA CoNTINEST



INFLUENCE MAXIMIZATION

@ We seek to solve

A" = argmax 4<c (A, T)

which is NP-hard in general.

N. Dwu, L. Sonc, M. Robricuez, H. ZHA CoNTINEST



INFLUENCE MAXIMIZATION

@ We seek to solve

A" = argmax ¢ (A, T)

which is NP-hard in general.

e o(A, T) is a non-negative, monotonic, submodular function.

N. Du, L. Sonc, M. Robmacuez, H. ZHA CoNTmEST



INFLUENCE MAXIMIZATION

@ We seek to solve

A" = argmax, 4 <c (A, T)

which is NP-hard in general.
e o(A, T) is a non-negative, monotonic, submodular function.

e Greedy algorithm achieves at least a fraction (1 — 1/e) of the optimal
value (OPT)

N. Du, L. Song, M. Robricuez, H. ZuEA CoNTINEST



INFLUENCE MAXIMIZATION

@ We seek to solve
A" = argmax, g 0(A, T)

which is NP-hard in general.

e o(A, T) is a non-negative, monotonic, submodular function.

o Greedy algorithm achieves at least a fraction (1 — 1/¢e) of the optimal
value (OPT)

THEOREM

Suppose the influence o(A, T) for all A with |A| < C are estimated uniformly

with error € and confidence 1 — 0§, the grekdy algorithm returns a set of sources A
such that

o(A, T) > (1 —1/e)OPT —2Ce

with probability at least 1 — 4.

N. Du, L. Song, M. Rooricuez, H. ZEA CoNTmEST




EXPERIMENTAL EVALUATION

@ Synthetic dataset
o Generate network structure.
o Weibull pairwise transmission function.
@ Real dataset
o MemeTracker data (172m news articles 08/2009-09/2009).

@ Evaluation

e Accuracy of estimated influence.
o Quality of selected sources.
o Scalability.

N. Du, L. Sonc, M. Rooracuez, H. ZHA CoNTmEST



SYNTHETIC DATASET

Accuracy of the estimated influence (highest out-degree node)

— irfimax

® CanTinEst

influence
[ ]

influence
[#]]

intiuence

2 4

(a) Core-periphery (b) Random (c) Hierarchical

e CONTINEST is close to INFLUMAX (sparse small networks,
exponential transmission functions).

@ accuracy does not depend on network structure (128 nodes, 141
edges). -

N. Du, L. Sonc, M. RobricuEz, H. ZeEA CoNTINEST




SYNTHETIC DATASET

Quality of the selected nodes for influence maximization

influance
influance

20 30 40 - : i D 10 30 40 50
EsniFres Bonreo: Ssources

(2) Core-periphery (c) Hierarchical

e CONTINEST typically outperforms competitive methods by 20%.

e Performance does not depend on network structure (1024 nodes,
2048 edges).

N. Dw, L. Sonc, M. Rooricuez, H. ZHA ConTINEST




SYNTHETIC DATASET

Scalability of influence maximization

lime(s)
tima(s)

=ConTinEst|

i
¥
i
f g
Ty Py
nr'\}i

.-E‘I-' an® -_G" 1:3':

(a) # sources (b) network density (c) network size
Small network Small network Up to one million nodes

= ConTinEs-==NS :-rri_.'."a:(;

2 3 4 5 6 7 8 9 10
fsnurces

]
Py £ e R

b
tnj =

¢ Small network : 128 nodes.

@ Large network : up to 1 million nodes, with density 1.5.
@ Qur algorithm : sample 10%@mersprys™5 random labels.

N. Du, L. Sonc, M. Robricuez, H. ZEA CoNTINEST




REAL DATASET

10,967 cascades.

Use 80% cascades for learning continuous-time diffusion model.

Select sources based on the learnt model.
Evaluate influence of the sources using 20% test cascades.

Compared to discrete-time diffusion models and scalable heuristics.

N. Du, L. Song, M. Robricuez, H. ZHA CoNTINEST



REAL DATASET

influegnce

0.5 — s =
#spources

(a) Estimation error (b) #sources (c) observation window

@ CONTINEST achieves the lowest MAE error.

N. Du, L. Sonc, M. Rooricuez, H. ZHA CoNTINEST




CONCLUSION

® A randomized algorithm achieving :
e the lowest estimation error in real data.

o the largest influence within short time period.

¢ the scaling up to millions of nodes in practice.

N. Du, L. Sonc, M. Robrmacuez, H. ZEA CoNTINEST




CONCLUSION

@ A randomized algorithm achieving :
e the lowest estimation error in real data.

o the largest influence within short time period.
¢ the scaling up to millions of nodes in practice.
e Future work :
o User engagement maximization of online systems.
¢ Influence minimization and manipulation.

e More general continuous-time diffusion model.

N. Du, L. Sonc, M. Robricuez, H. ZEA CoNTINEST
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@ A randomized algorithm achieving :
e the lowest estimation error in real data.

o the largest influence within short time period.
¢ the scaling up to millions of nodes in practice.
e Future work :
e User engagement maximization of online systems.
¢ Influence minimization and manipulation.

e More general continuous-time diffusion model.

@ Welcome to our poster F41 for detailed discussion.
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