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Conventional Wisdom About the Functional
Implications of the Anatomical Hierarchy

It would appear rather straightforward to assume that the
functional organization of the visual system somehow
directly reflects the underlying anatomical hierarchy. In
its extreme form, there are two facets to this assumption.
One is that the visual processing itself is hierarchical,
and the other is that the hierarchy at the functional level
parallels that at the anatomical level.

The notion that visual processing is hierarchical has
been around since before the anatomical hierarchy was elu-
cidated. Marr (1982) was one of the early and influential
proponents of hierarchical processing in vision (Fig. 1C).
He proposed that during the early stages of visual process-
ing, the visual system extracts information about the local
image elements (i.e., the basic “building blocks” or primi-
tives) of the visual scene, such as the local contrast, orien-
tation, and so on, to construct a raw “primal sketch” of the
visual scene. In intermediate stages of processing, the
visual system constructs a representation of object surfaces
(or “2½-D sketch”) using the information about the primi-
tives that was extracted during the previous stage. Finally,
the visual system constructs a full representation of the
visual scene (or “3-D sketch”) by combining the various
elements of the 2½-D sketch. Many modern models also
propose similar processing hierarchies (see Palmer 1999).

Fig. 1. Anatomical and functional hierarchies in the macaque visual system. The human visual system (not shown) is
believed to be roughly similar. A, A schematic summary of the laminar patterns of feed-forward (or ascending) and feed-
back (or descending) connections for visual area V1. The laminar patterns vary somewhat from one visual area to the next.
But in general, the connections are complementary, so that the ascending connections terminate in the granular layer (layer
4) and the descending connections avoid it. The connections are generally reciprocal, in that an area that sends feed-
forward connections to another area also receives feedback connections from it. The visual anatomical hierarchy is defined
based on, among other things, the laminar patterns of these interconnections among the various areas. See text for details.
B, A simplified version of the visual anatomical hierarchy in the macaque monkey. For the complete version, see Felleman
and Van Essen (1991). See text for additional details. AIT = anterior inferotemporal; LGN = lateral geniculate nucleus; 
LIP = lateral intraparietal; MT = middle temporal; MST = medial superior temporal; PIT = posterior inferotemporal; V1 =
visual area 1; V2 = visual area 2; V4 = visual area 4; VIP = ventral intraparietal. C, A model of hierarchical processing of
visual information proposed by David Marr (1982). D, A schematic illustration of the presumed parallels between the
anatomical and functional hierarchies. It is widely presumed not only that visual processing is hierarchical but also that the
anatomical hierarchy provides a substrate for, and therefore parallels, the hierarchical processing.

Table 1. Connectivity of Areas/Regions in a
Hypothetical Visual System

Receives Sends
Cortical Area/ Ascending Ascending
Subcortical Nucleus Input from Output to

A B, D B
B A, F A
C D, G D
D C, E, F, G A, C, E, F
E D, F D, F
F D, E, H B, E, D
G H, I C, D, H
H G, I F, G
I J G, H
J K I
K Retina J

Only the ascending connections are shown. Given these
connectivity data, can you arrange these areas into a hier-
archy? The answer is shown below. Does the hierarchy
remain the same if the input source for K is unknown?
What happens if other inputs and/or outputs are
unknown? (Answer: This data set results in the same hier-
archical structure shown in Figure 1B, with the names of
the visual areas/regions substituted as follows: A = 7a; B =
AIT; C = VIP; D = MST; E = LIP; F = PIT; G = MT; H = V4; 
I = V2; J = V1; K = LGN.)

 © 2007 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at CARNEGIE MELLON UNIV LIBRARY on November 29, 2007 http://nro.sagepub.comDownloaded from 

from Hedgé and Felleman, 2007
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Palmer and Rock, 1994
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V1 simple cells

Hubel and Wiesel, 1959
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Out of the retina

• > 23 distinct neural pathways, no simple function 
division

• Suprachiasmatic nucleus: circadian rhythm 

• Accessory optic system: stabilize retinal image

• Superior colliculus: integrate visual and auditory 
information with head movements, direct eyes

• Pretectum: plays adjusting pupil size, track large 
moving objects 

• Pregeniculate: cells responsive to ambient light

• Lateral geniculate (LGN): main “relay” to visual 
cortex; contains 6 distinct layers, each with 2 
sublayers. Organization very complex



Michael S. Lewicki ! Carnegie MellonNIPS 2007 Tutorial

!"#"$%&"'(()'*+,-+)".*)(/"*'"&0.1/("2(//&

!"#$%&'(")&* +,%"-

345

2(//&

60.1/(

2(//

!78(/"#"$0(&(/9":;<=

Hubel and Wiesel, 1963

9

V1 simple cell integration of LGN cells
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Hubel and Wiesel, 1978

Hyper-column model
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Anatomical circuitry in V1

11
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December 26, 1997 16:38 Annual Reviews AR050-03
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Figure 1 Contributions of individual neurons to local excitatory connections between cortical

layers. From left to right, typical spiny neurons in layers 4C, 2–4B, 5, and 6 are shown. Dendritic

arbors are illustrated with thick lines and axonal arbors with finer lines. Each cell projects axons

specifically to only a subset of the layers. This simplified diagram focuses on connections between

layers 2–4B, 4C, 5, and 6 and does not incorporate details of circuitry specific for subdivisions of

these layers. A model of the interactions between these neurons is shown in Figure 2. The neurons

shown have been modified for illustrative purposes from actual reconstructions of intracellularly

labeled cells (seeCallaway&Wiser 1996,Wiser&Callaway 1996). [Modeled after Gilbert (1983).]

A similar circuit exists within macaque V1 (Anderson et al 1993, Callaway

& Wiser 1996) if we consider layer 4C to be analogous to the cat’s layer 4 and

layers 2–4B analogous to layer 2/3 (Casagrande & Kaas 1994; see also above).

Layer 4C is the primary recipient of geniculate input, and the spiny stellate

neurons in the layer project mostly to layers 2–4B, with a weaker projection

to deeper layers (Figure 1, far left). Layer 2–4B spiny stellate and pyramidal

neurons in turn project to layer 5 (Figure 1, middle-left). However, unlike cat

V1, there may not be a dense projection from layer 5 to layer 6 (Callaway

& Wiser 1996; see below for details). Instead, most layer 5 pyramids provide

extremely dense feedback projections to layers 2–4B (Figure 1,middle). Layer 6

pyramidal neuronswith dense dendritic arbors in layer 5 are also likely to receive

input from layers 2–4B (Figure 1, middle-right), as well as from horizontal

axons of layer 5 pyramids (not shown in Figure 1) (Callaway & Wiser 1996).

Like layer 5 pyramids, these layer 6 cells provide a strong feedback projection

to layers 2–4B (Figure 1, middle-right) (Wiser & Callaway 1996). A second

class of layer 6 pyramid has few dendritic branches in layer 5 and makes a

strong feedback projection to layer 4C (Figure 1, far right) (Wiser & Callaway

1996).

from Callaway, 1998
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Where is this headed?

12

Ramon y Cajal



A wing would be a most mystifying structure
if one did not know that birds flew.

Horace Barlow, 1961

An algorithm is likely to be understood more 
readily by understanding the nature of the 
problem being solved than by examining the 
mechanism in which it is embodied.

David Marr,  1982
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A theoretical approach

14

• Look at the system from a functional perspective: 

What problems does it need to solve?

• Abstract from the details:

Make predictions from theoretical principles.

• Models are bottom-up;  theories are top-down.

What are the relevant computational principles?
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image from Field (1994)

Representing structure in natural images
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image from Field (1994)

Representing structure in natural images
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image from Field (1994)

Representing structure in natural images
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image from Field (1994)

Representing structure in natural images

Need to describe all image structure in the scene.

What representation is best?
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V1 simple cells

Hubel and Wiesel, 1959
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Oriented Gabor models of individual simple cells

figure from Daugman, 1990; data from Jones and Palmer, 1987

20
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2D Gabor wavelet captures spatial structure

21

• 2D Gabor functions

• Wavelet basis generated by 
dilations, translations, and 
rotations of a single basis function

• Can also control phase and 
aspect ratio

• (drifting) Gabor functions are what 
the eye “sees best”
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Recoding with Gabor functions

22

Pixel entropy = 7.57 bits Recoding with 2D Gabor functions
Coefficient entropy = 2.55 bits
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How is the V1 population organized?

23
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A general approach to coding: redundancy reduction

24
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Correlation of adjacent pixels

Redundancy reduction is equivalent to efficient coding.
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Describing signals with a simple statistical model

25

Principle

Good codes capture the statistical distribution of sensory patterns.

How do we describe the distribution?

•  Goal is to encode the data to desired precision

• Can solve for the coefficients in the no noise case

x = !a1s1 + !a2s2 + · · · + !aLsL + !ε

= As + ε

ŝ = A−1x
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An algorithm for deriving efficient linear codes: ICA

Learning objective:

     maximize coding efficiency

⇒ maximize P(x|A) over A.

Probability of the pattern ensemble is:

To obtain P(x|A) marginalize over s:

Using independent component analysis 
(ICA) to optimize A:

where z = (log P(s))’. 

This learning rule:

• learns the features that capture the 
most structure

• optimizes the efficiency of the code

What should we use for P(s)?

26

P (x1,x2, ...,xN |A) =
∏

k

P (xk|A)

P (x|A) =
∫

dsP (x|A, s)P (s)

=
P (s)

| detA|

∆A ∝ AAT ∂

∂A
log P (x|A)

= −A(zsT − I)
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Modeling Non-Gaussian distributions

• Typical coeff. distributions of natural 
signals are non-Gaussian.

27
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The generalized Gaussian distribution

• Or equivalently, and exponential power distribution (Box and Tiao, 1973):

• " varies monotonically with the kurtosis, #2:

28

P (x|q) ∝ exp(−1
2

|x|q)

P (x|µ, σ,β) =
ω(β)

σ
exp

[
−c(β)

∣∣∣∣
x− µ

σ

∣∣∣∣
2/(1+β)

]

!=!0.75  "
2
=!1.08 !=!0.25  "

2
=!0.45 !=+0.00 (Normal)  "

2
=+0.00

!=+0.50 (ICA tanh)  "
2
=+1.21 !=+1.00 (Laplacian)  "

2
=+3.00 !=+2.00  "

2
=+9.26
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Modeling Gaussian distributions with PCA

• Principal component 
analysis (PCA) describes 
the principal axes of 
variation in the data 
distribution.

• This is equivalent to fitting 
the data with a multivariate 
Gaussian.

29
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Modeling non-Gaussian distributions

• What about non-Gaussian 
marginals?

• How would this distribution 
be modeled by PCA?

30



Michael S. Lewicki ! Carnegie MellonNIPS 2007 Tutorial

!6 !4 !2 0 2 4 6

!=2

s
1

!6 !4 !2 0 2 4 6

!=4

s
2

Modeling non-Gaussian distributions

• What about non-Gaussian 
marginals?

• How would this distribution 
be modeled by PCA?

• How should the distribution 
be described?

31

The non-orthogonal ICA 
solution captures the non-

Gaussian structure
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Efficient coding of natural images: Olshausen and Field, 1996

32

. . .

. . .

visual input units receptive fields

before

learning

after

learning

nature scene

. . .

Network weights are adapted to maximize coding efficiency:
minimizes redundancy and maximizes the independence of the outputs

natural scene visual input image basis functions
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Model predicts local and global receptive field properties

33

Learned basis for natural images Overlaid basis function properties

from Lewicki and Olshausen, 1999
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Algorithm selects best of many possible sensory codes

34

Learned

Gabor

Wavelet

Fourier

Haar

PCA

Theoretical perspective: Not edge “detectors.” 
An efficient code for natural images.

from Lewicki and Olshausen, 1999
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Comparing coding efficiency on natural images

35
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Responses in primary visual cortex to visual motion
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from Wandell, 1995
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Sparse coding of time-varying images (Olshausen, 2002)
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I(x, y, t) =
∑

i

∑

t′

ai(t′)φi(x, y, t− t′) + ε(x, y, t)

=
∑

i

ai(t) ∗ φi(x, y, t) + ε(x, y, t)
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Sparse decomposition of image sequences
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Learned spatio-temporal basis functions

time

basis

function

39

from Olshausen, 2002
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Animated spatial-temporal basis functions

40

from Olshausen, 2002
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Theory
  $   explains data from principles

  $   requires idealization and abstraction

Principle
  $   code signals accurately and efficiently 

  $   adapted to natural sensory environment

Idealization   $   cell response is linear 

Methodology   $   information theory, natural images

Prediction
  $   explains individual receptive fields

  $   explains population organization

41
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How general is the efficient coding principle?

Can it explain auditory coding?

42
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Limitations of the linear model

• linear

• only optimal for block, not whole signal

• no phase-locking

• representation depends on block alignment
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A continuous filterbank does not form an efficient code

⊗ ←

→

→

→

Goal:

       find a representation that is both time-relative and efficient

44
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Efficient signal representation using time-shiftable kernels (spikes)

x(t) =
M∑

m=1

nm∑

i=1

sm,i φm(t − τm,i) + ε(t)

• Each spike encodes the precise time and magnitude of an acoustic feature

• Two important theoretical abstractions for “spikes”

- not binary

- not probabilistic

• Can convert to a population of stochastic, binary spikes

Figure 3: Smith, NC ms 2956

4

Smith and Lewicki (2005) Neural Comp. 17:19-45

45
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Coding audio signals with spikes
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Comparing a spike code to a spectrogram
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c How do we compute the spikes?
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“can” with filter-threshold

Residual

Reconstruction

Input
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Spike Coding with Matching Pursuit

1. convolve signal with kernels

49



Michael S. Lewicki ! Carnegie MellonNIPS 2007 Tutorial

Spike Coding with Matching Pursuit

1. convolve signal with kernels

2. find largest peak over convolution set

50
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Spike Coding with Matching Pursuit

1. convolve signal with kernels

2. find largest peak over convolution set

3. fit signal with kernel

51
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Spike Coding with Matching Pursuit

1. convolve signal with kernels

2. find largest peak over convolution set

3. fit signal with kernel

4. subtract kernel from signal, record 
spike, and adjust convolutions

52
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Spike Coding with Matching Pursuit

1. convolve signal with kernels

2. find largest peak over convolution set

3. fit signal with kernel

4. subtract kernel from signal, record 
spike, and adjust convolutions

5. repeat

53
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Spike Coding with Matching Pursuit

1. convolve signal with kernels

2. find largest peak over convolution set

3. fit signal with kernel

4. subtract kernel from signal, record 
spike, and adjust convolutions

5. repeat

54
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Spike Coding with Matching Pursuit

1. convolve signal with kernels

2. find largest peak over convolution set

3. fit signal with kernel

4. subtract kernel from signal, record 
spike, and adjust convolutions

5. repeat

55
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Spike Coding with Matching Pursuit

1. convolve signal with kernels

2. find largest peak over convolution set

3. fit signal with kernel

4. subtract kernel from signal, record 
spike, and adjust convolutions

5. repeat

56
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Spike Coding with Matching Pursuit

1. convolve signal with kernels

2. find largest peak over convolution set

3. fit signal with kernel

4. subtract kernel from signal, record 
spike, and adjust convolutions

5. repeat . . .

57
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Spike Coding with Matching Pursuit

1. convolve signal with kernels

2. find largest peak over convolution set

3. fit signal with kernel

4. subtract kernel from signal, record 
spike, and adjust convolutions

5. repeat . . .

6. halt when desired fidelity is reached

58
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“can” 5 dB SNR, 36 spikes, 145 sp/sec
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“can” 10 dB SNR, 93 spikes, 379 sp/sec
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“can” 20 dB SNR, 391 spikes, 1700 sp/sec
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“can” 40 dB SNR, 1285 spikes, 5238 sp/sec
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Efficient auditory coding with optimized kernel shapes

x(t) =
M∑

m=1

nm∑

i=1

sm,i φm(t − τm,i) + ε(t)

Figure 3: Smith, NC ms 2956

4

Adapt algorithm of Olshausen (2002)

Smith and Lewicki (2006) Nature 439:978-982

What are the optimal kernel shapes?

63
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Optimizing the probabilistic model

x(t) =
M∑

m=1

nm∑

i=1

sm
i φm(t− τm

i ) + ε(t),

p(x|Φ) =
∫

p(x|Φ, s, τ)p(s)p(τ)dsdτ

≈ p(x|Φ, ŝ, τ̂)p(ŝ)p(τ̂)

ε(t) ∼ N (0,σε)

Learning (Olshausen, 2002):

∂

∂φm
log p(x|Φ) =

∂

∂φm
log p(x|Φ, ŝ, τ̂) + log p(ŝ)p(τ̂)

=
1

2σε

∂

∂φm
[x−

M∑

m=1

nm∑

i=1

ŝm
i φm(t− τm

i )]2

=
1
σε

[x− x̂]
∑

i

ŝm
i

Also adapt kernel lengths
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Adapting the optimal kernel shapes
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Kernel functions optimized for coding speech

66
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Quantifying coding efficiency

1. fit signal

2. quantize time and amplitude values

3. prune zero values

4. measure coding efficiency using the 
entropy of quantized values

5. reconstruct signal using quantized 
values

6. measure fidelity using signal-to-noise 
ratio (SNR) of residual error

• identical procedure for other codes 
(e.g. Fourier and wavelet)

x(t) =
M∑

m=1

nm∑

i=1

sm,i φm(t − τm,i) + ε(t)Residual
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Coding efficiency curves
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Using efficient coding theory to make theoretical predictions

Natural Sound Environment

optimal kernels:
• properties
• coding efficiency

physiological data:
• auditory nerve filter shapes
• population trends 

evolution

?

Michael S. Lewicki ! Carnegie Mellon Bad Zwischenahn ! Aug 21, 2004 

A simple model of auditory coding
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auditory revcor filters: gammatones
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stochastic
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More theoretical questions:

•  Why gammatones?

•  Why spikes?

•  How is sound coded by

   the spike population?

How do we develop a theory?

Michael S. Lewicki ! Carnegie Mellon Bad Zwischenahn ! Aug 21, 2004 

Comparing a spike code to a spectrogram

How do we compute the spikes?

a

100
200

500

1000

2000

5000

K
er

ne
l C

F 
(H

z)

b

Fr
eq

ue
nc

y 
(H

z)

100 200 300 400 500 600 700      800 ms

1000

2000

3000

4000

5000

c

0.1 0.2 0.5 1 2 5
0.1

0.2

0.5

1

2

5

Center Frequency (kHz)

)
z

H
k( 

ht
di

w
d

n
a

B
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theory

only compare to the data after optimizing
we do not fit the data

Prediction depends on sound ensemble.
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Learned kernels share features of auditory nerve filters

Optimized kernels

scale bar = 1 msec

Auditory nerve filters

from Carney, McDuffy, and Shekhter, 1999
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Learned kernels closely match individual auditory nerve filters

for each kernel find closet matching auditory nerve filter
in Laurel Carney’s database of ~100 filters.
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Learned kernels overlaid on selected auditory nerve filters

For almost all learned kernels there is a closely matching auditory nerve filter.
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Coding of a speech consonant
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How is this achieving an efficient, time-relative code?
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Time-relative coding of glottal pulses
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Theory
  $   explains data from principles

  $   requires idealization and abstraction

Principle
  $   code signals accurately and efficiently

  $   adapted to natural sensory environment

Idealization   $   analog spikes 

Methodology
  $   information theory, natural sounds

  $   optimization

Prediction   $   explains individual receptive fields

  $   explains population organization
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A gap in the theory?

from Hubel, 1995

Learned

Gabor

Wavelet

Fourier

Haar

PCA
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Redundancy reduction for noisy channels (Atick, 1992)

input

channel

recoding output

channel
y = Ax + !y = x + 

A

yAxxs

"
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Mutual information

I(x, s) =
∑

s,x

P (x, s) log2

[
P (x, s)

P (s)P (x)

]

I(x, s) = 0 iff P (x, s) = P (x)P (s), i.e. x and s are independent.
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Profiles of optimal filters

• high SNR

- reduce redundancy

- center-surround

• low SNR

- average

- low-pass filter

• matches behavior of 
retinal ganglion cells
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An observation: Contrast sensitivity of ganglion cells

79

Luminance level decreases one log unit each time we go to lower curve.
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Natural images have a 1/f amplitude spectrum

80

Field, 1987



Michael S. Lewicki ! Carnegie MellonNIPS 2007 Tutorial

Components of predicted filters

81

from Atick, 1992

low-pass filter

whitening filter

optimal filter
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Predicted contrast sensitivity functions match neural data

82

from Atick, 1992
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Robust coding of natural images

from Hubel, 1995

• Theory refined:

- image is noisy and blurred

- neural population size changes

- neurons are noisy

83
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Problem 1: Real neurons are “noisy”

system (area) stimulus bits / sec bits / spike

fly visual (H1) motion 64 ~1

monkey visual (MT) motion 5.5 - 12 0.6 - 1.5

frog auditory (auditory nerve) noise & call 46 & 133 1.4 & 7.8

Salamander visual (ganglinon cells) rand. spots 3.2 1.6

cricket cercal (sensory afferent) mech. motion 294 3.2

cricket cercal (sensory afferent) wind noise 75 - 220 0.6 - 3.1

cricket cercal (10-2 and 10-3) wind noise 8 - 80 avg. = 1

Electric fish (P-afferent) amp. modulation 0 - 200 0 - 1.2

Estimates of neural information capacity

After Borst and Theunissen, 1999

84

Limited capacity ⇒ neural codes need to be robust.
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Traditional codes are not robust

Original

sensory input

encoding neurons
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sensory input

encoding neurons

Traditional codes are not robust

Add
noise equivalent
to 1 bit precision

Original reconstruction

sensory input

encoding neurons

1x efficient coding

1 bit precision

86
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Redundancy plays an important role in neural coding

Response of salamander retinal ganglion cells to natural movies

From Puchalla et al, 2005 

Neuron
494

electrode array. To explore the manner in which visual
scenes are represented within the population of retinal
ganglion cells, we calculated the fractional redundancy
between all pairs of ganglion cells. This quantity mea-
sures the degree to which pairs of ganglion cell spike
trains encode the same visual information (Gat and
Tishby, 1999; Gawne and Richmond, 1993; Panzeri and
Schultz, 2001; Petersen et al., 2001; Schneidman et al.,
2003a); its value is sensitive not just to pairwise correla-
tions between spikes, but to all correlations that can
be directly sampled (see Experimental Procedures). By
directly sampling, the redundancy can be measured
without implicitly assuming any model of the light re-
sponse or of the noise. Redundancy was defined as
the difference between the mutual information that the
responses of each cell alone conveyed about the stim-
ulus, I(Ra;S) and I(Rb;S), and the information conveyed
by their joint responses, I(Ra,Rb;S). As information rates
varied widely within the population of ganglion cells, we
calculated the redundancy as a fraction of the minimum
information of the two individual cells (Reich et al.,
2001):

This normalization factor, min{I(Ra;S), I(Rb;S)}, is the
maximum possible redundancy between two cells, so
that the fractional redundancy can be no greater than
1. The fractional redundancy is 0 when the two cells
encode independent information about the stimulus; its
value is 1 when the two cells encode exactly the same
information or when one cell’s information is a subset
of the other’s. Negative values of the redundancy mean
that the cells are synergistic.

Redundancy between Pairs of Ganglion Cells
In order to assess retinal processing under realistic vi-
sual conditions, we stimulated retinas with a set of nat-
ural movie clips chosen to represent a variety of envi-
ronments. An especially important characteristic of
natural stimuli is the wide field motion caused by the
movement of an animal’s eyes or body, as this should

Figure 1. Redundancy under Natural Stimulationstrongly stimulate many ganglion cells. We included
(A) Single frames from four natural movie clips having differentmovies having five different categories of motion: ob-
categories of motion.ject motion, optic flow, smooth pursuit, saccades, and
(B) Examples of spike rasters from ten cells recorded simulta-combinations of these kinds of motion. Movies catego- neously during the forest walk movie clip. Each dot represents the

rized as having object motion were filmed while the time of a spike; vertical dimension shows 120 repeated stimulus
video camera remained stationary and one or more ob- trials. Cells A and B have a fractional redundancy of 0.17, while cell

C does not share significant redundancy with any of the other cells.jects within the field of view moved freely (see Experi-
(C) Fractional redundancy for 1838 cell pairs in 4 retinas stimulatedmental Procedures). For the other categories of movies,
by natural scenes plotted versus the distance between the cell’sthe camera was moved so as to stimulate eye or body
receptive-field centers. The type of motion present in each moviemovements. Most movies were taken of woodland clip is shown by the dot color: object motion (red), saccades (blue),

scenes, but some were aquatic or man-made. Four ex- optic flow (green), smooth pursuit (black), and combinations of mo-
amples of movie frames are shown in Figure 1A. tion (orange).

Figure 1B shows spike rasters from ten cells re-
corded simultaneously during the forest walk movie. As
seen, the spike trains were sparse and temporally pre- pairs stimulated by 12 different movies versus the dis-

tance between ganglion cells, as determined from thecise, primarily occurring in well-isolated firing events
(Berry et al., 1997). There was a complex pattern of receptive field of each cell (see Experimental Pro-

cedures). Although the redundancy depended system-event times across the population, with some cells
sharing many narrow events and others sharing none. atically on the distance between cells, there was wide

variation among the values for cell pairs of roughly theFigure 1C plots the fractional redundancy for 1838 cell
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Robust coding (Doi and Lewicki, 2005,2006)
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DRAFT FOR IEEE TRANS. ON IMAGE PROCESSING 2

Abstract

We examine the problem of minimum error reconstruction subject to noise or imprecision in the code, which we shall call
robust coding. We present a theoretical analysis for one- and two-dimensional cases that characterizes the optional linear encoder
and decoder in the mean squared error sense. The analysis allows for an arbitrary number of coding units, thus including both
under- and over-complete representations, and provides insights into optimal coding strategies. In particular, we show how the
form of the code adapts to the number of coding units and to different data and noise conditions in order to achieve robustness.
We also report numerical solutions of robust coding for high-dimensional image data and show that these codes are substantially
more robust compared against other image codes such as PCA, ICA, and wavelets.

I. INTRODUCTION

Many approaches to optimal coding focus on representing information with minimum entropy by approximating the
underlying statistical density of the data, such as principal or independent component analysis (PCA or ICA), or by developing
encoding/decoding algorithms with desirable computational and representational properties, such as Fourier and wavelet-based
codes. Another important, but less commonly addressed, aspect of coding is robustness: how much information about the signal
is retained when the representation is subject to noise (equivalently, if the representation itself has limited precision)? Standard
approaches to coding often fail tests of robustness. Although a code may achieve maximum dimensionality reduction with
minimal error or may be statistically optimal with minimal entropy, the representation is often assumed to be real-valued and
noise-free, which implicitly assumes a representation whose coefficients have infinite precision. If the coefficients are subject to
noise or their precision is limited, optimality of the representation cannot be guaranteed. Optimality under limited precision is
a common in practical concern: it would be useful if the data can be represented with small error with low-bit precision. This
issue is also relevant to biological neural representations where the coding precision of individual neurons has been reported
to be as low as a few bits (for a review, see [1]).

Because such a noisy, low-precision code can be interpreted as a bottleneck at the representation, the problem might appear
similar to dimensionality reduction or compression. However, as we describe in detail below, it is a fundamentally different
problem. For instance, what if a great number of coding elements are available while their coding precision is significantly
limited? In that case, the apparent dimensionality could be increased (instead of reduced) while the total representational
capacity is still limited. Robust coding should make optimal use of such an arbitrary number of coding units in order to
improve the fidelity of the code. As we will see, robust coding introduces redundancy into the code in order to allow the
recovered signal to be separated from the assumed noise in the representation, unlike PCA or ICA that reduces redundancy in
the code.

In this paper we present the optimal linear encoder and decoder when the coefficients are noisy, and show that their forms
change adaptively to the number of units and to the different data and noise conditions. This paper is organized as follows.
First, in section II, we formulate the problem. Then, in section III, we analyze the solutions for the general case, and present
the optimal solutions for one- and two-dimensional case. Next, in section IV, we apply the proposed robust coding to image
coding and demonstrate its considerable robustness compared against conventional image codes. Finally, in section V, we
discuss related studies.

II. PROBLEM FORMULATION

To define our model (Fig. 1), we assume that the data is N -dimensional with zero mean and covariance matrix Σx, and
consider two matrices W ∈ RM×N and A ∈ RN×M . For each data point x, its representation r in the model is the linear
transform of x through matrix W, perturbed by the additive noise (i.e., channel noise) n ∼ N (0, σ2

n IM ):

r = Wx + n = u + n. (1)

We refer to W as the encoding matrix and its row vectors as encoding vectors. The reconstruction of a data point is the linear
transform of the noisy representation using matrix A:

x̂ = Ar = AWx + An. (2)

We refer to A as the decoding matrix and its column vectors as decoding vectors. The term AWx in eq. 2 determines how
the reconstruction depends on the data, and An expresses the influence of the channel noise in the reconstruction. If there is
no channel noise (n=0), then AW = I is equivalent to perfect reconstruction.

The goal of the system is to form an accurate representation of the data that is robust to the presence of channel noise.
More precisely, we seek an optimal pair of linear encoder and decoder. We quantify the accuracy of the reconstruction by the
mean squared error (MSE) over samples. The reconstruction error of each sample point is

ε = x− x̂ = (IN −AW)x−An, (3)

and the MSE E = 〈εT ε〉 = tr
(
〈εεT 〉

)
is given in matrix form as

E(A,W) = tr{(IN −AW)Σx(IN −AW)T }+ σ2
n tr{AAT }. (4)
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Generalizing the model: sensory noise and optical blur

sensory noise channel noise

observation reconstruction

encoder decoderoptical blur
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(b) Fovea retinal image (c) 40 degrees eccentricity(a) Undistorted image

89

Can also add sparseness and resource constraints

only implicit



Michael S. Lewicki ! Carnegie MellonNIPS 2007 Tutorial

Robust coding is distinct from “reading” noisy populations

126 |  NOVEMBER 2000 |  VOLUME 1  www.nature.com/reviews/neuro

R E V I EW S

In EQN 2, si is the direction (the preferred direction) that
triggers the strongest response from the cell, ! is the
width of the tuning curve, s – si is the angular difference
(so if s = 359° and si = 2°, then s – si = 3°), and k is a scal-
ing factor. In this case, all the cells in the population
share a common tuning curve shape,but have different
preferred directions, si (FIG. 1a).Many population codes
involve bell-shaped tuning curves like these.

The inclusion of the noise in EQN 1 is important
because neurons are known to be noisy. For example, a
neuron that has an average firing rate of 20 Hz for a
stimulus moving at 90°might fire at only 18 Hz on one
occasion for a particular 90° stimulus, and at 22 Hz on
another occasion for exactly the same stimulus5. Several
factors contribute to this variability, including uncon-
trolled or uncontrollable aspects of the total stimulus
presented to the monkey, and inherent variability in
neuronal responses. In the standard model, these are
collectively considered as random noise. The presence of
this noise causes important problems for information
transmission and processing in cortical circuits, some of
which are solved by population codes. It also means that
we should be concerned not only with how the brain
computes with population codes,but also how it does so
reliably in the presence of such stochasticity.

Decoding population codes
In this section, we shall address the following question:
what information about the direction of a moving
object is available from the response of a population of
neurons? Let us take a hypothetical experiment. Imagine
that we record the activity of 64 neurons from area MT,
and that these neurons have spatially overlapping recep-
tive fields. We assume that all 64 neurons have the same
tuning curve shape with preferred directions that are
uniformly distributed between 0° and 360° (FIG. 1a). We
then present an object moving in an unknown direc-
tion, s, and we assume that the responses are generated
according to EQN 1. If we plot the responses, r, of the 64
neurons as a function of the preferred direction of each
cell, the resulting pattern looks like a noisy hill centred in
the vicinity of s (FIG. 1b). The question can now be
rephrased as follows: what information about the direc-
tion s of the moving object is available from the
observed responses, r?

The presence of noise makes this problem challeng-
ing. To recover the direction of motion from the
observed responses, we would like to assess for each cell,
i, the exact contribution of its tuning curve, fi(s), to its
observed response. However, on a single trial, it is
impossible to apportion signal and noise in the
response. For instance, if a neuron fires at 54 Hz on one
trial, the contribution of the tuning curve could be 30
Hz, with 24 Hz due to noise.However, the contributions
could just as easily be 50 Hz and 4 Hz, respectively.
Nevertheless, given some knowledge of the noise, it is
possible to assess probabilities for these unknowns. If
the noise follows a normal distribution with a mean of
zero and a neuron fires at 54 Hz on a particular trial, it is
more likely that the contribution of the tuning curve in
our example is 50 Hz rather than 30 Hz.

rate.Other aspects of the response, such as the precise
timing of individual spikes, might also have a function
in coding information,but here we shall focus on prop-
erties of response rates,because they are simpler and are
better understood. (For reviews of coding through spike
timing, see REFS 1–3.)

More formally, we can describe the response of a cell
using an encoding model4. In one simple such model,

In EQN 1, fi(s), the average response, is the TUNING CURVE

for the encoded variable s (the direction) and ni is the
noise. The letter i is used as an index for the individual
neuron; it varies from 1 to n, where n is the total number
of neurons under consideration. We use the notation r
to refer to all the activities and f(s) for their means.Here,
r and f(s) are vectors with n components, each of which
corresponds to one neuron. Experimental measure-
ments have shown that the noise term (ni) can typically
be characterized as following a normal distribution
whose variance is proportional to the mean value, fi(s)
(REF. 5). When fi(s) is a gaussian, it can be written as:

fi(s) = ke (2)– (s–si)2/2!2

ri = fi(s) + ni (1)
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Figure 1 | The standard population coding model. a | Bell-shaped tuning curves to direction for

16 neurons. b | A population pattern of activity across 64 neurons with bell-shaped tuning curves in

response to an object moving at –40°. The activity of each cell was generated using EQN 1, and

plotted at the location of the preferred direction of the cell. The overall activity looks like a ‘noisy’ hill

centred around the stimulus direction. c | Population vector decoding fits a cosine function to the

observed activity, and uses the peak of the cosine function, ŝ, as an estimate of the encoded

direction. d | Maximum likelihood fits a template derived from the tuning curves of the cells. More

precisely, the template is obtained from the noiseless (or average) population activity in response to

a stimulus moving in direction s. The peak position of the template with the best fit, ŝ, corresponds

to the maximum likelihood estimate, that is, the value that maximizes P(r |s).

NONLINEAR FUNCTION

A linear function of a one-
dimensional variable (such as
direction of motion) is any
function that looks like a straight
line, that is, any function that
can be written as y = ax + b,
where a and b are constant. Any
other functions are nonlinear. In
two dimensions and above,
linear functions correspond to
planes and hyperplanes. All
other functions are nonlinear.

GAUSSIAN FUNCTION

A bell-shaped curve. Gaussian
tuning curves are extensively
used because their analytical
expression can be easily
manipulated in mathematical
derivations.

TUNING CURVE

A tuning curve to a feature is the
curve describing the average
response of a neuron as a
function of the feature values.

From Pouget et al, 2001

Here, we want to learn an optimal image code using noisy neurons.
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How do we learn robust codes?

Objective: 

 ! Find W and A that minimize reconstruction error.
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• Channel capacity of the ith neuron: 

• To limit capacity, fix the coefficient signal to noise ratio:
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where det(P) = det(PT ) = 1 and diag(Ω) = (ω1, · · · ,ωN ). Therefore,

ln det(γ2VVT + IN ) =
N∑

k=1

ln(γ2ω2
k + 1). (81)

Using Jensen’s inequality,
N∑

k=1

ln(γ2ω2
k + 1) ≤ N · ln

[
γ2

N

N∑

k=1

ω2
k + 1

]
= N · ln

[
γ2 + 1

]
, (82)

where we used tr(VVT ) = tr(PΩ2PT ) = tr(Ω2) =
∑N

k=1 ω2
k and tr(VVT ) = N (from eq. 8), and the equality holds iff

ω2
k = 1, ∀ k. !

F. etc

(Cost) = (Error) + λ (Var. Const.) (83)

(Var. Const.) =
M∑

i=1

[
ln

(
〈u2

i 〉
σ2

u

)]2

(84)

σ2
u

∆W ∝ − ∂

∂W
(Cost) = 2 AT (IN −AW)Σx − λ

4
M

diag
[
ln{diag(WΣxWT )/c}

diag(WΣxWT )

]
WΣx (85)

A = ΣxWT (σ2
nIM + WΣxWT )−1 (86)

⇔ ∂

∂A
(Cost) = O (87)

SNRi =
〈u2

i 〉
σ2

n

(88)

〈u2
i 〉 = σ2

u (89)

Ci =
1
2

ln(SNRi + 1)

√
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√
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2(1 + M
2 SNR)

( √
λ1√
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)
(90)

E =
1

M
N · SNR + 1

1
N

[
N∑

i=1

√
λi

]2

(91)

&E =
∑N

i=1

√
λi

M
N · SNR + 1

1
N





√
λ1
...√
λN



 (92)

λi: i-th eigenvalue of the data.
σ2

x: data variance of 1-D data, or the eigenvalues of isotoropic data.
M : # of coding units (neurons)

diag(〈uuT 〉) = diag(WΣxWT ) = σ2
u1M (93)
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Now robust coding is formulated as a 
constrained optimization problem.

sensory noise channel noise
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encoder decoderoptical blur
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sensory input

encoding neurons

Robust coding of natural images

Add
noise equivalent
to 1 bit precision

Original reconstruction

sensory input

encoding neurons

1x efficient coding

1 bit precision
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(34% error)
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Robust coding of natural images

Original

sensory input

encoding neurons

Weights adapted for optimal 
robustness

1x robust coding

1 bit precision
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reconstruction (3.8% error)
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Reconstruction improves by adding neurons

Original reconstruction error: 0.6%8x robust coding

1 bit precision

sensory input

encoding neurons

Weights adapted for optimal 
robustness
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Adding precision to 1x robust coding

original images 1 bit: 12.5% error 2 bit: 3.1% error
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Can derive minimum theoretical average error bound

     - ith eigenvalue of the data covariance

 N - input dimensionality

 M - # of coding units (neurons) 
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x W u r A x̂

n
Encoder Decoder

Channel Noise

Data Noisy

Representation

Noiseless

Representation

Reconstruction

Fig. 1. Diagram of the model.

Note that the optimal solution of A and W depends solely on second-order statistics, i.e., the covariance matrix of the data
Σx and the chanel noise variance σ2

n.
We are interested in the system in which the precision of the code is limited, i.e., the representation r has a limited

signal-to-noise ratio (SNR). In order to limit the SNR, we fix the variance of each coding unit,

〈u2
i 〉 = σ2

u, (5)

which yields the same SNR for each unit,

γ2 =
σ2

u

σ2
n

. (6)

As the channel capacity of information is defined by C =
1
2

ln(γ2 + 1) [2], limiting the SNR is equivalent to limiting the
capacity for each unit. We shall call this constraint as channel capacity constraint.

III. OPTIMAL SOLUTIONS AND THEIR CHARACTERISTICS

The goal now is to minimize the MSE (eq. 4) subject to the channel capacity constraint (eq. 5). In this section, we first
analyze the problem in the general case as far as we can, and then we present the optimal solutions in some feasible cases,
namely, for one-dimensional (1-D) and two-dimensional (2-D) data.

First, let us consider how to reflect the channel capacity constraint in the solution. This constraint limits the search space
of W but not A, since W is the parameter that has an influence on σ2

u (cf. eqs. 1 and 2). Therefore, the channel capacity
constraint (eq. 5) is expressed in terms of W as

diag(WΣxWT ) = σ2
u 1M , (7)

where 1M = (1, · · · , 1)T ∈ RM . It takes a convenient form,

diag(VVT ) = 1M (8)

when we define V by a linear transform of W,

V ≡ WES/σu, (9)

where Σx = EDET is the eigenvalue decomposition of the data covariance matrix, S = D
1
2 = diag(

√
λ1, · · · ,

√
λM ), and

λi ≡ Dii are the eigenvalues of Σx. To summarize, the channel capacity constraint is now incorporated in W in such a way
that its linear transform V should have row vectors of unit length.

Next, let us consider a necessary condition for the minimum E , i.e., the first derivative of E should be zero with respect to
all free parameters. Regarding A, ∂E/∂A = O yields (see Appendix A)

A =
1
σu

γ2ES(IN + γ2VT V)−1VT . (10)

(Note that the necessary condition with respect to W (or equivalently, with respect to V) is not as straightforward as this since
W (or V) is constrained to a certain subspace by the channel capacity constraint. We leave this condition as it is for now.)

Using the channel capacity constraint (eq. 9) and the necessary condition with respect to A (eq. 10), the MSE (eq. 4) can
be simplified as (see Appendix B)

E = tr{D · (IN + γ2VT V)−1}. (11)

Finally, the problem is reformulated as finding V that minimizes eq. 11 where V should satisfy the variance constraint (eq.
8).
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encoding/decoding vectors are symmetric about the first principal axis; For M≥3, there are infinitely many configurations of
unit-length connected bars starting from the origin and ending at the optimal Z, and nothing can be added about their regularity.
Interestingly, as γ2/γ2

C is the larger, there is the more flexibility for the Z configuration since the optimal y becomes greater
than M (note that all bars must align to the real axis if y = M ). This is depicted in Fig. 3 from M =3 to M =5 with γ2

2 = 1,
where γ2/γ2

C is increased as M . If γ2 ≤ γ2
c , the optimal Z is M , and the optimal configuration is when all the bars align

straight along the real axis. In this case, encoding/decoding vectors are all parallel to the principal axis (e1), as described by
eqs. 40-41. Such a degenerate code does not exist in the isotropic case.

The optimal solutions for the overcomplete representation are not trivial in the sense that they are in general not given by
the simple replication of the optimal for the lower number of units. For example, under γ2 =1 in Fig. 3, the optimal solution
for M =4 is not identical to the replication of the optimal solution for M =2. More precisely, when we double the number
of codig units (Md = 2×M ), its optimal condition is (from eq. 36)

yd =
√

λ1 −
√

λ2√
λ1 +

√
λ2

(
2
γ2

+ 2×M

)
(43)

&= 2× y (44)

where y is the optimal value for M coding units, implying that the optimal solution for Md = 2×M is not a replication of
the optimal solution for M .

The robust reconstruction for anisotropic 2-D data exploits the correlation of the data, which is implemented via biased
representations towards the first principal axis. For M =1 and for the degenerate case, where only one axis in two dimensional
space is represented, the optimal strategy is to preserve information along the first principal axis at the cost of losing all
information along the minor axis. For the other case (i.e., M ≥ 2 and non-degenerate), it turned out that the data component
along the first principal axis is reconstructed more precisely than that along the minor axis; the error ratio along e1 and e2 is
given by

√
λ2 :

√
λ1 (note the switch of the subscripts; Appendix D). Since

√
λ2 <

√
λ1, the percentage of reconstruction is

greater for the first principal axis. It is illustrated in Fig. 3: the reconstruction ellipse is more flattened than the data ellipse;
if there was no bias, the ellipse for the reconstruction should have been similar to that of the data.

C. Summary of the analysis
We summarize the minimum MSE in Table I. First, it is common in all cases that the minimum MSE is monotonically

decreasing with respect to both the number of coding units M and the SNR in the representation γ2, and they can compensate
for each other (e.g., when the SNR is lowered by half, we can keep the same error level by doubling the number of coding
units). Second, the 1-D solution shares the same form as in the 2-D isotropic case (by noting that the numerator is the data
variance and that the coefficient of γ2 is the overcomplete ratio M/N ). Third, the 2-D anisotropic solution reduces to the 2-D
isotropic solution with λ1 = λ2 (there is no degenerate code in this case). Finally, the degenerate solution in 2-D anisotropic
case has the 1-D solution in its first term, as it boils down to the 1-D problem along the first principal data axis.

TABLE I
SUMMARY OF THE MINIMUM MEAN SQUARED ERROR.

1-D E =
σ2

x

M · SNR + 1

2-D
Isotropic E =

2σ2
x

M
2 · SNR + 1

2-D
Anisotropic E =

1
M
2 · SNR + 1

(
√

λ1 +
√

λ2)2

2
if SNR ≥ SNRc

E =
λ1

M · SNR + 1
+ λ2 if SNR ≤ SNRc

IV. APPLICATION TO IMAGE CODING

In the previous section we characterized the optimal solutions for 1-D and 2-D data. For the higher dimensional data, such
an explicit analysis remains to be investigated. Here, we present numerical solutions for high-dimensional image data and
demonstrate its robustness to channel noise. To derive an optimal solution we can employ a gradient descent method with
respect to the cost function (its details are given in [3], [4]).

Fig. 4 show the performance of our proposed code when applied to a test image. The data consists of 8×8 pixel blocks (i.e.,
N = 64), which are randomly sampled from the 512×512 pixel image. We set the number of coding units as M =64 (where

96

Balcan, Doi, and Lewicki, 2007;
Balcan and Lewicki, 2007

Results Bound

0.5x 19.9% 20.3%

1x 12.4% 12.5%

8x 2.0% 2.0%

Algorithm achieves theoretical lower bound
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Sparseness localizes the vectors and increases coding efficiency
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Non-zero resource constraints localize weights
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average error is also unchanged
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Theory
  $   explains data from principles

  $   requires idealization and abstraction

Principle
  $   code signals accurately, efficiently, robustly 

  $   adapted to natural sensory environment

Idealization
  $   cell response is linear, noise is additive

  $   simple, additive resource constraints

Methodology
  $   information theory, natural images

  $   constrained optimization

Prediction

  $   explains individual receptive fields

  $   explains non-linear response

  $   explains population organization
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What happens next?

from Hubel, 1995
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What happens next?
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Joint statistics of filter outputs show magnitude dependence

tion) is zero, independent of L2, indicating that the two respons-
es are uncorrelated. But the width of the distribution of L1
increases with the amplitude of L2. That is, the variance of L2
depends on L1.

This form of dependency seems to be ubiquitous; it is evident
it in a wide variety of natural images and sounds. It occurs even
when the filters are chosen to be orthogonal, non-overlapping
or from a set that is optimized for statistical independence5. The
strength of the dependency varies depending on the specific pair
of filters chosen (Fig. 3). Nevertheless, this dependency is a prop-
erty of natural signals, and is not due purely to properties of this
particular set of linear filters. For example, no such dependency
is observed when the input consists of white noise.

We formalize the conditional relationship between a given
pair of linear filter responses {L1, L2} with a model in which the
variance of L2 is proportional to the squared value of L1 plus a
constant (Methods, Eq. 1). For a pair of filters with strongly
dependent responses, this proportion is larger; for a pair that
have independent responses, this proportion is zero. Because L2
also depends on the responses of a number of other filters with-
in a local neighborhood, we form a generalization of this condi-
tional variance model in which L2 is proportional to a weighted
sum of the squared responses over the neighborhood and an
additive constant. We compute a set of optimal weights and an
additive constant by maximizing the likelihood of the conditional
distribution over an ensemble of images or sounds (Methods,
Eq. 5). Intuitively, these weights are larger for pairs of filters that

Fig. 1. Linear filter responses to
example image and sound stimuli.
(a) A natural image convolved
with two filters selective for the
same spatial frequency, but differ-
ent orientation and spatial posi-
tion; the lower filter is oriented
45° away, and shifted up by 4 pix-
els. At a given location, when the
first filter responds weakly (gray
areas) the second filter will also
tend to respond weakly. But when
the first filter responds strongly
(black or white), the second filter
is more likely to respond strongly.
The red arrows indicate a location
corresponding to a high contrast
edge, in which both filters are
responding strongly (the first positive, and the second negative). (b) A natural sound convolved with two filters tuned for different temporal frequen-
cies (2000 and 2840 Hz center frequencies). Red arrows indicate a time at which both filters are responding strongly. When the first filter responds
weakly, the second also tends to respond weakly.   

820 nature neuroscience  •  volume 4  no 8  •  august 2001

have stronger dependency. The constant represents the residual
variance that cannot be predicted from neighboring filters.

If this model fully describes the dependency between filter
responses, how can these responses be made independent? Given
that the dependency governs only the variance, the natural solu-
tion is to divide the squared response of each filter by its vari-
ance, as predicted from a linear combination of its neighbors (see
Methods; Fig. 4). A natural signal is passed through a bank of
linear filters (only two are depicted, for readability). In the gain
control stage, the squared response of each filter is divided by a
weighted combination of squared responses of other filters in the
population plus an additive constant (Methods, Eq. 4). The
resulting responses are significantly more independent. Related
work examines models for variance dependence, as well as the
conditions under which division is optimal19.

The model illustrated in Fig. 4 incorporates a form of auto-
matic gain control known as ‘divisive normalization’ that has been
used to account for many nonlinear steady-state behaviors of neu-
rons in primary visual cortex10,20,21. Normalization models have
been motivated by several basic properties. First, gain control
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Fig. 2. Joint statistics of a typical natural image as seen through two lin-
ear filters. Top, the linear response of a vertical filter (L2), conditioned
on two different values of the response of a diagonal spatially shifted fil-
ter (L1). Pairs of responses are gathered over all image positions, and a
joint histogram is constructed by counting the frequency of occurence
of each pair of responses. The two one-dimensional histograms are ver-
tical slices of this joint histogram. Differing widths of these histograms
clearly indicate that the filter responses are not statistically indepen-
dent. Bottom, grayscale image depicting the full two-dimensional condi-
tional histogram. Pixel intensity is proportional to the bin counts,
except that each column is independently rescaled to fill the range of
intensities. Responses of L1 and L2 are roughly decorrelated (expected
value of L2 is approximately 0, independent of L1) but not statistically
independent. Specifically, the variance of distribution of L2 increases
with increasing value (both positive and negative) of L1.
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Using sensory gain control to reduce redundancy
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masking tone. As in the visual data, the rate–level curves of the
auditory nerve fiber shift to the right (on a log scale) in the pres-
ence of the masking tone (Fig. 6c and d). This shift is larger when
the mask frequency is closer to the optimal frequency for the cell.
Again, the model behavior is due to variations in suppressive
weighting across neurons tuned for adjacent frequencies, which
in turn arises from the statistical properties illustrated in Fig. 3b.

As mentioned above, a motivating characteristic of normal-
ization models has been the preservation of the shape of the tun-
ing curve under changes in input level. However, the shapes of
physiologically measured tuning curves for some parameters
exhibit substantial dependence on input level in both audition16

and vision17,18. Figure 7a shows an example of this behavior in a
neuron from primary visual cortex of a macaque monkey24. The
graph shows the response of the cell as a function of the radius of
a circular patch of sinusoidal grating, at two different contrast lev-
els. The high-contrast responses are generally larger than the low-
contrast responses, but in addition, the shape of the curve changes.
Specifically, for higher contrast, the peak response occurs at a
smaller radius. The same behavior is seen in our model neuron.

Analogous results were obtained for a typical cell in the audi-
tory nerve fiber of a squirrel monkey16 (Fig. 7b). Responses are
plotted as a function of frequency, for a number of different sound
pressure levels. As the sound pressure level increases, the frequency
tuning becomes broader, developing a ‘shoulder’ and a secondary
mode (Fig. 7b). Both cell and model show similar behavior,
despite the fact that we have not adjusted the parameters to fit
these data; all weights in the model are chosen by optimizing the
independence of the responses to the ensemble of natural sounds.
The model behavior arises because the weighted normalization
signal is dependent on frequency. At low input levels, this fre-
quency dependence is inconsequential because the additive con-
stant dominates the signal. But at high input levels, this frequency
dependence modulates the shape of the frequency tuning curve

that is primarily established by the numerator kernel of the model.
In Fig. 7b, the high contrast secondary mode corresponds to fre-
quency bands with minimal normalization weighting.

DISCUSSION
We have described a generic nonlinear model for early sensory
processing, in which linear responses were squared and then
divided by a gain control signal computed as a weighted sum of
the squared linear responses of neighboring neurons and a con-
stant. The form of this model was chosen to eliminate the type
of dependencies that we have observed between responses of pairs
of linear receptive fields to natural signals (Fig. 2). The parame-
ters of the model (in particular, the weights used to compute the
gain control signal) were chosen to maximize the independence
of responses to a particular set of signals. We demonstrated that
the resulting model accounts for a range of sensory nonlinearities
in ‘typical’ cells. Although there are quantitative differences
among individual cells, the qualitative behaviors we modeled
have been observed previously. Our model can account for phys-
iologically observed nonlinearities in two different modalities.
This suggests a canonical neural mechanism for eliminating the
statistical dependencies prevalent in typical natural signals.

The concept of gain control has been used previously to explain
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Model accounts for several non-linear response properties

ber of mechanisms. For example, feedforward synaptic depres-
sion mechanisms have been documented and have been shown to
exhibit gain control properties30. Although such mechanisms
may account for suppressive behaviors within the classical recep-
tive field, they seem unlikely to account for such behaviors like
those shown in Fig. 6. It has also been proposed that normaliza-
tion could result from shunting inhibition driven by other neu-
rons31–33. This type of implementation necessarily involves
recursive lateral or feedback connections and thus introduces
temporal dynamics. Some researchers have described recurrent
models that can produce steady-state responses consistent with
divisive normalization in primary visual cortex10,20.

Some of the gain control behaviors we describe may be attrib-
uted to earlier stages of neural processing. Gain control occurs
at the level of the retina9,34, although selectivity for orientation
does not arise before cortical area V1. In fact, division by local

Fig. 7. Nonlinear changes in tuning curves at different input levels. 
(a) Mean response rate of a V1 neuron as a function of stimulus radius
for two different contrasts. The peak response radius for both cell and
model is smaller for the higher contrast24. (b) Mean response rate of an
auditory nerve fiber as a function of stimulus frequency for a range of
sound pressure levels16. Tuning curve broadens and saturates at high
levels. For all plots, maximum model response has been rescaled to
match that of the cell.

nonlinear behaviors of neurons. For example, a number of audi-
tory models have incorporated explicit gain control mecha-
nisms8,28,29. Visual models based on divisive normalization have
been developed to explain nonlinear effects in cortical area V1
within the classical receptive field10,20. The standard model
assumes that the response of each neuron is divided by an equal-
ly weighted sum of all other neurons and an additive constant.
Our model uses a weighted sum for the normalization signal, and
is thus able to account for a wider range of nonlinear behaviors. In
addition, our model provides an ecological justification, through
the efficient coding hypothesis2, for such gain control models.

Our model accounts for nonlinear changes in tuning curve
shape at different levels of input. Such behaviors have been gen-
erally interpreted to mean that the fundamental tuning proper-
ties of cells depend on the strength of the input signal. But in our
model, the fundamental tuning properties are determined by a
fixed linear receptive field, and are modulated by a gain control
signal with its own tuning properties. Although such behaviors
may seem to be artifacts, our model suggests that they occur nat-
urally in a system that is optimized for statistical independence
over natural signals.

Our current model provides a functional description, and
does not specify the circuitry or biophysics by which these func-
tions are implemented. Our normalization computation is done
instantaneously and we have only modeled mean firing rates.
Normalization behavior could potentially arise through a num-

Fig. 6. Suppression of responses to optimal stimuli by masking stimuli.
(a) Vision experiment24. Mean response rate of a V1 neuron of an audi-
tory nerve fiber as a function of contrast of an optimally oriented grat-
ing presented in the classical receptive field, in the presence of a
surrounding parallel masking stimulus. Curves on cell data plots are fits
of a Naka–Rushton equation with two free parameters24. (b) Mean
response rate versus center contrast, in the presence of an orthogonal
surround mask. (c) Auditory experiment11. Mean response rate of an
auditory nerve fiber versus sound pressure level, in the presence of a
non-optimal mask at 1.25 times the optimal frequency. (d) Mean
response rate versus sound pressure level, in the presence of a non-
optimal mask at 2.08 times the optimal frequency. For all plots, maxi-
mum model response has been rescaled to match that of the cell.
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ber of mechanisms. For example, feedforward synaptic depres-
sion mechanisms have been documented and have been shown to
exhibit gain control properties30. Although such mechanisms
may account for suppressive behaviors within the classical recep-
tive field, they seem unlikely to account for such behaviors like
those shown in Fig. 6. It has also been proposed that normaliza-
tion could result from shunting inhibition driven by other neu-
rons31–33. This type of implementation necessarily involves
recursive lateral or feedback connections and thus introduces
temporal dynamics. Some researchers have described recurrent
models that can produce steady-state responses consistent with
divisive normalization in primary visual cortex10,20.

Some of the gain control behaviors we describe may be attrib-
uted to earlier stages of neural processing. Gain control occurs
at the level of the retina9,34, although selectivity for orientation
does not arise before cortical area V1. In fact, division by local

Fig. 7. Nonlinear changes in tuning curves at different input levels. 
(a) Mean response rate of a V1 neuron as a function of stimulus radius
for two different contrasts. The peak response radius for both cell and
model is smaller for the higher contrast24. (b) Mean response rate of an
auditory nerve fiber as a function of stimulus frequency for a range of
sound pressure levels16. Tuning curve broadens and saturates at high
levels. For all plots, maximum model response has been rescaled to
match that of the cell.

nonlinear behaviors of neurons. For example, a number of audi-
tory models have incorporated explicit gain control mecha-
nisms8,28,29. Visual models based on divisive normalization have
been developed to explain nonlinear effects in cortical area V1
within the classical receptive field10,20. The standard model
assumes that the response of each neuron is divided by an equal-
ly weighted sum of all other neurons and an additive constant.
Our model uses a weighted sum for the normalization signal, and
is thus able to account for a wider range of nonlinear behaviors. In
addition, our model provides an ecological justification, through
the efficient coding hypothesis2, for such gain control models.

Our model accounts for nonlinear changes in tuning curve
shape at different levels of input. Such behaviors have been gen-
erally interpreted to mean that the fundamental tuning proper-
ties of cells depend on the strength of the input signal. But in our
model, the fundamental tuning properties are determined by a
fixed linear receptive field, and are modulated by a gain control
signal with its own tuning properties. Although such behaviors
may seem to be artifacts, our model suggests that they occur nat-
urally in a system that is optimized for statistical independence
over natural signals.

Our current model provides a functional description, and
does not specify the circuitry or biophysics by which these func-
tions are implemented. Our normalization computation is done
instantaneously and we have only modeled mean firing rates.
Normalization behavior could potentially arise through a num-

Fig. 6. Suppression of responses to optimal stimuli by masking stimuli.
(a) Vision experiment24. Mean response rate of a V1 neuron of an audi-
tory nerve fiber as a function of contrast of an optimally oriented grat-
ing presented in the classical receptive field, in the presence of a
surrounding parallel masking stimulus. Curves on cell data plots are fits
of a Naka–Rushton equation with two free parameters24. (b) Mean
response rate versus center contrast, in the presence of an orthogonal
surround mask. (c) Auditory experiment11. Mean response rate of an
auditory nerve fiber versus sound pressure level, in the presence of a
non-optimal mask at 1.25 times the optimal frequency. (d) Mean
response rate versus sound pressure level, in the presence of a non-
optimal mask at 2.08 times the optimal frequency. For all plots, maxi-
mum model response has been rescaled to match that of the cell.
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What about image structure?

• Bottom-up approaches focus on the non-linearity.

• Our aim here is to focus on the computational problem:

    How do we learn the intrinsic dimensions of natural image structure?

• Idea: characterize how the local image distribution changes.
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Perceptual organization in natural scenes

image of Kyoto, Japan from E. Doi
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Palmer and Rock’s theory of perceptual organization

Palmer and Rock, 1994
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Gestalt grouping principles

from Palmer,  1999
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Malik and Perona’s (1991) model of texture segregation

Visual Features

input image

output of dark 
bar filters

output of light 
bar filters
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Malik and Perona algorithm can find texture boundaries

Painting by Gustav Klimt texture boundaries from Malik and 
Perona algorithm
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Can we apply these to natural scenes?

natural scenes are more complex, and the structures more subtle
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A different representation of a natural scene 
(Kersten and Yuille, 2003)
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A representation we’re more familiar with
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A representation we’re more familiar with
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This is what our brain does
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How do neurons in the visual cortex generalize?

(image data from Doi et al, 2003)

Conjecture 1:
Two regions are similar if they 

come from the same 
statistical distribution.

Conjecture 2:
Neurons encode the local 

distribution of natural images.
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Perceptual generalization in natural scenes
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Perceptual generalization in natural scenes
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Linear representations do not separate the image classes

projection onto the first 2 principal components of the data

. . .

. . .

. . .

. . .
•  bushes

•  hillside

• tree edge

• tree bark



Michael S. Lewicki ! Carnegie MellonNIPS 2007 Tutorial

Modeling local natural scene statistics

• need to model local scene 
structure, not average scene 
statistics

• need to model all structure

- want a “complete” code

- a universal “texture” model

• code should be distributed and 
statistically efficient
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ICA mixtures for similar images

Limitations:

• can only have a small number of classes

• representations are not shared

• cannot learn intrinsic dimensions

from Lee, Lewicki, and Sejnowski 2000
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R
1

R
2

a b

Characterizing different natural image densities
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Characterizing different natural image densities

R
1

R
2

a b

!3 !2 !1 0 1 2 3

123



Michael S. Lewicki ! Carnegie MellonNIPS 2007 Tutorial

Characterizing different natural image densities

R
1

R
2

a b

!3 !2 !1 0 1 2 3
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Characterizing different natural image densities

R
1

R
2

a b
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Characterizing different natural image distributions

R
1

R
2

a b
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Generalizing the standard ICA model

P (s) =
∏

i
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Generalizing the standard ICA model

P (s) =
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Independent density components

B
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Illustration of inference in the model using synthesized data

a b

c

d
true B learned B

v∼ p(v) !!!= cexp(Bv) u∼ p(u|!!!) !̂!! v̂
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Synthesis Inference
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Learning higher-order structure of natural images

• A is learned with ICA

• B is learned by maximizing
   the posterior distribution

Train on natural images

131



Michael S. Lewicki ! Carnegie MellonNIPS 2007 Tutorial

Interpreting higher-order density components

Gabor function fits

v
i

position orientation/scaleraw weights B
i
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Interpreting higher-order density components
v
i
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Interpreting higher-order density components
v
i
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Interpreting higher-order density components
v
i
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Interpreting higher-order density components
v
i
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Interpreting higher-order density components
v
i
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Interpreting higher-order density components
v
i
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Interpreting higher-order density components
v
i
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Learned density components of natural images

(30 out of 100 shown)
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Full set of natural image density components
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What about a feed-forward non-linearity?

1.! Take standard ICA model:

2. ! Add non-linearity: λi = log |si|

3. ! Do ICA again on output:

Isn’t this the same?
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ICA on non-linearity reveals no structure

subset of  ICA basis functions on log |s|
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Inferred v forms a sparse distributed code
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Most typical images for selected density components
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Distributed representation of natural image densities
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Comparing the degree of abstraction

147



Michael S. Lewicki ! Carnegie MellonNIPS 2007 Tutorial

Winner maps: Maximum |u
i
| for each pixel
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Winner maps: Maximum |v
i
| for each pixel
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A distributed code for visual surfaces
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Smooth changes in representation for texture gradients

v act 3 biggest pcs

higher-level output First 3 PCs



Smooth changes in representation for texture gradients

higher-level output First 3 PCs



Clustering the higher-order representation yields segmentation

clustering v’s

clustering color



Model can be extended to model local covariance structure



distributions in simple cell space (V1)

2D projection of 400D space

Linear code of image regions



distributions in higher-order space

2D projection of 150D space

Distributed covariance model of image regions

For more, see workshop talk
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Theory
  $   explains data from principles

  $   requires idealization and abstraction

Principle
  $   code signals accurately and efficiently

  $   adapted to natural sensory environment

Idealization   $   neurons encode local image distributions

Methodology
  $   information theory, natural images

  $   hierarchical, probabilistic models

Prediction   $   good generalization in natural images

  $   functional explanation of non-simple cells?
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