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The astonishing hypothesis of neuroscience is that thoughts and emotions are the 
interactions of neuronal signals. The synapses that mediate interactions between cortical 
neurons are located within a thin layer of cells that covers the surface of the brain.  The local 
results of these interactions in the gray matter are communicated to distant brain regions 
along pathways comprising many axons.  Mapping these pathways- the white matter tracts-
is an essential part of understanding brain function.  Until recently, there have been no non-
invasive methods to estimate white matter tracts in the living human brain. New magnetic 
resonance and computational methods have emerged that provide a great deal of 
information about these structures in healthy and diseased brains.  These Diffusion Tensor 
Imaging (DTI) methods measure water diffusion throughout the brain. These measurements 
provide an aggregate measure of the microscopic structure of living brain tissue that has 
sparked the development of statistical algorithms to compare the local diffusion properties in 
different brains, such as those of healthy and diseased groups. Further, a number of labs 
have developed Fiber Tractography (FT) algorithms that use the diffusion measurements to 
estimate the pathways followed by the white matter fiber tracts as they course their way from 
one gray matter region to another.  In this tutorial, we will describe (a) the measurements, (b) 
the statistical algorithms, (c) the FT algorithms, and (d) various applications.
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Diffusion tensor imaging and fiber  
tractography of human brain pathways

• The brain (~ 5 slides)
• MR - diffusion weighted imaging  (~ 20 slides)
• The diffusion surface (~30 slides)

• The surface shape
• Statistical analysis
• Visualization: Diffusion surfaces 

•Fiber tractography – The algorithms (~30 slides)
• Deterministic algorithms
• Probabilistic wavefront algorithms
• Most likely pathway



The Brain

Neurons – Cells; in cortex they are within a sheet on the surface; 

1013 in human

Synapses – Connections between cells; 1016 in human

Columns – Groups of neurons with similar properties

Axons – Carry cell output signals; various lengths from a fraction 
of a millimeter to many centimeters

Fascicles – Multiple axons traveling together; single cells do not 

find a single projection cell.



MR Signal Processing:
Respect The Cortical Surface



White Matter:  
Axons and 
Fascicles 

(Axon 
bundles)

Transverse section

Longitudinal section

Peripheral nerve

Axons a very fine
They appear to travel 
together in bundles called 
fascicles
The functionality of these 
fascicles is unknown
There are regular properties 
of these fascicles identified 
in histology

http://neuromedia.neurobio.ucla.edu/campbell/nervous/wp_images/182_TS_LP.gif
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The White Matter

From: The Virtual Hospital (www.vh.org); TH Williams, N Gluhbegovic, JY Jew



Figure 2Figure 1

Pediatric Neurology
Volume 30, Issue 2 , 
February 2004, Pages 140-142 

White matter damage is common



MR: Diffusion Weighted Imaging

Description of diffusion within a voxel



5.17  Diffusion. Over time, molecules within gases or liquids will move freely through the medium.



5.18  Isotropic and anisotropic diffusion.



“The success of diffusion MRI is deeply rooted in the powerful 
concept that during their random, diffusion driven displacements
molecules probe tissue structure at a microscopic scale well 
beyond the usual image resolution: during typical diffusion times of 
about 50 msec (Le Bihan)”

• Diffusion imaging is the only non-invasive measurement of 
diffusion

• Diffusion image doesn’t interfere with diffusion
• Diffusion is an intrinsic process that does not depend on the 

distortions introduced into the local magnetic field; hence it is 
unlike the T1, T2 or fMRI (BOLD) effects



H2O 
Diffusion 
Probes 

Microscopic 
Structures 
In the Brain 

Along the axon, within 
the cytoskeleton, there 
is a large 
Apparent Diffusion 
Coefficient (ADC)

Optic nerve fibres
George Bartzokis

Optic nerve fibres
George Bartzokis



H2O 
Diffusion 
Probes 

Microscopic 
Structures 
In the Brain 

Bi-lipid cell membranes 
limit diffusion.
Hence, perpendicular to 
the length the ADC is 
smaller

Optic nerve fibres
George Bartzokis

Optic nerve fibres
George Bartzokis



Diffusing Water Probes
Microscopic Tissue Structure

• Tissue structures affect diffusion
• MR diffusion measures depend on 

microscopic structure within voxel
• Diffusion through white matter probes:

– density of axons
– degree of myelination
– average fiber diameter 
– directional similarity of axons



MR Principles

• MR signals measure how 
excited spins decay over time
• These spins (usually hydrogen) 
decay at a rate that depends on 
their (a) environment and (b) 
diffusion



Stejskal-Tanner equation is essential for 
measuring diffusion

Signal attenuation = exp(-b * ADC)



Diffusion-weighted gradient echo sequence 
(Stejskal-Tanner)

– Gradient pair (G,-G) has no net effect on stationary spin

– Second pulse undoes first

– Moving spins are not re-phased by second pulse

– Phase-shift causes a signal decay that depends on the distance 
moved during time ΔT (diffusion time)

Functional Magnetic Resonance Imaging (2004). Huettel et al., Fig 5.19B

ΔΤ

Not used in recent 
years, but good for 
explanation.

“The truth, you 
can’t handle the 
truth.”



Protons Precessing in Phase



Diffusion Weighting: First Pulse

Magnetic field gradient



Time to Diffuse



Diffusion Weighting: Second Pulse

Magnetic field gradient



Reduced signal from spin dephasing

Stejskal-Tanner equation: 
Signal attenuation = exp(-b * ADC)



Diffusion measured in celery
(Beaulieu, 2002)
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Bloch-Torrey Equations

• The Block-Torrey equations specify how net 
magnetization depends on these several factors 
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Diffusion coefficient

The T1 term 
contributes very little 
for reasons not 
explained here.

It turns out that 
diffusion disturbs the 
T2 image

Diffusion coefficient
Sequence-
dependent 
constant



Diffusion coefficient

Diffusion coefficient
Sequence-
dependent 
constant

So we measure two 
T2 images at different 
b levels.

Once measure the 
gradients as shown 
(M+).  Then measure 
again with b=0 (Mb=0)
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Diffusion distances

• In isotropic case, an 
average water 
molecule will diffuse a 
distance of 

in a time t, and D is the  
scalar apparent 
diffusion coefficient. 

~ 3  um2/ms – Body temperature in water (CSF)
~ 2.1 um2/ms – Body temperature in axoplasm

T

2Dt



Mean diffusivity (MD) summarizes the diffusion in 
all directions

• MD has units of m2/sec
• Diffusion-weighted imaging 
(DWI) is commonly used in 
clinical applications
• For many years, clinicians 
made measurements in the 
three principal directions

Ventricles

Foong, J et al. J Neurol Neurosurg Psychiatry 2000;68:242-244



Diffusion Tensor Imaging  Diffusion: a 
model of measurements in multiple 

directions



Diffusion Tensor Imaging
Point-wise Analyses

Short version:
Measure in multiple 

directions and summarize 
iso-diffusion surface as 

an ellipsoid



DTI Data Sets Are Volumes 
of Diffusion Surfaces

Conventional MR volumes 
are real-valued

DTI data are surfaces



DTI Data Sets Are Volumes 
of Diffusion Surfaces

DTI data are surfaces

“The shape of the effective 
diffusion ellipsoid has a 
useful physical 
interpretation. … a 
diffusion tensor … defines 
a surface of constant mean 
translational displacement 
of spin-labelled particles.”

Basser, Mattiello & LeBihan
(1994) Biophysical Journal, 
pg. 261.



Mathematical Description:
An ellipsoid (Diffusion tensor)

• Water molecules move in physical Brownian 
motion (t = time).

x  - the position in 3-space (m)
t   - time (sec)
D - 3x3 Diffusion tensor (m2/sec)

p(x,t) - probability density of a molecule being at location x at time t
The std. dev. of this Gaussian is the mean diffusion distance

1

3

1 1( , ) exp( (2 ) )
2(2 ) 2

tp x t x Dt x
Dtπ
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Key term



Mathematical Description:
An Ellipsoid (Diffusion Tensor)

2
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• The diffusion at each sample location is 
represented by a 3x3 covariance (positive, semi-
definite) matrix .



Mathematical Description:
An Ellipsoid (Diffusion Tensor)

This surface 
summarizes the mean 
distance from the 
starting position that a 
typical particle (water 
molecule) will travel in 
diffusion time T = ½



Mathematical Description:
An Ellipsoid (Diffusion Tensor)

• The local diffusion is represented by a 3x3 
covariance matrix (positive, semi-definite).
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Apparent diffusion coefficients (ADC) SVD decomposition

Eigenvalues: 1 2 3 0λ λ λ≥ ≥ >

Eigenvectors: i jv v i j⊥ ≠



Visualization ideas

Represent the tensor in terms of 
three components: linear, 
spherical and planar.  These 
components are derived from 
the eigenvalues.

This figure compares the ellipsoidal 
representation of a tensor (above) 
with the authors’ proposed 
composite shape that includes a 
linear, planar and spherical 
component (below).  These 
components are scaled according 
to the eigenvalues,



Visualization of the tensor data
(G-Glyphs; Kindlmann et al.)

http://www.cs.utah.edu/~gk/papers/vissym04/web/slide003.html

• We ignore rotation
• Keep size the size 
by equalizing the 
trace
• Account for required 
ordering



Visualization of the tensor data
(G-Glyphs; Kindlmann et al.)

They argue that we 
should summarize the 
information using super-
quadrics rather than 
ellipsoids.  I agree that 
they are easier to 
interpret.  They don’t, 
however, show the 
estimated iso-diffusion 
surface.  But they are 
attractive and 
informative.



Example DTI 
Image 

Using G-Glyphs

Comparison of 
ellipsoid (top) and 
superquadric
(bottom) 
representation.



Conceptual organization of the parameters

Eigenvalues: 1 2 3 0λ λ λ≥ ≥ >

Eigenvectors: i jv v i j⊥ ≠

• There are 6 parameters in the diffusion tensor – 3 eigenvalues; 2 

directions for first eigenvector; one direction for second.

• Research scientists need a way to think about these data.

• Physicists and mathematicians took the lead in defining 

summaries

• The best summaries will come from achieving a biologically-

based parameterization. 



Fractional Anisotropy
(Basser & Pierpaoli, 1996)

• Normalized variance of 
ellipsoid axis magnitudes
– FA=0 for sphere 
– FA=1 for tube
– FA is dimensionless

2 2 2
1 2 3 1 2 3

2 2 2
1 2 3

3 ( ) ( ) ( ) ,
2 3

λ λ λ λ λ λ λ λ λλ
λ λ λ

− + − + − + +
=

+ +

( )iλ λ=

2,3( 0)λ ≈



Fractional Anisotropy (FA) summarizes one aspect of the 
diffusion surface

T1 FA

FA range: 0.1 – 0.7; dimensionless

1 cm



Reading

Shaywitz et al., 2002

Controls > Dys
Non-word rhyming



In Adults 
Correlations 

Exist Between 
Reading 

Performance 
and FA

(Klingberg et al., 2000)

For the gray scale, lighter colors represent higher anisotropy. 
Green indicates voxels significant in both the between group 
analysis and the Word ID correlation analysis; yellow indicates 
voxels significant only in the between-group analysis;and blue 
indicates voxels significant only in the correlation analysis.



FA correlates with reading skill in children
Deutsch, Dougherty, Bammer, Siok, Gabrieli, Wandell (2005) 

Beaulieu C, Plewes C, Paulson LA, Roy D, Snook L, Concha L, Phillips L. (2005).



We See This 
Correlation 
In Children 
and Adults

r = 0.62
(p = 0.017) Poor readers

Normal readers

r = 0.78
(p = 0.01)

Adult

Children, 8-12



Conclusions
Diffusion tensor imaging can be used 
in a variety of ways, ranging from FA 
maps, direction maps, and fiber tracts

There is excellent agreement that 
certain white matter differences 
correlate with reading skill.

Interpreting these differences, by 
describing the data with respect to the 
natural brain structures (fiber bundle 
positions and properties) is 
underway, but still in its infancy.  



FA Does Not 
Discriminate 

Between 
Ellipsoid 

Orientations: 
What More Can 
We Learn From 

Direction?

Fractional Anisotropy = 0.6
Directions differ



Using Direction We See Much More
Account for Directional Data Requires New Statistical Methods



The Directional Difference Appears Occurs in Anterior 
Cortex (N=14)

(Schwartzmann, Dougherty, Taylor, 2005, MRM)

Poor ReadersGood Readers Bipolar Watson Distribution

cm
FA difference



“Accurate reconstruction of neural connectivity patterns from DTI
has been hindered, however, by the inability of DTI to resolve more 
than a single axon direction within each imaging voxel. Here, we 
present a novel magnetic resonance imaging technique that can 
resolve multiple axon directions within a single voxel. The 
technique, called q-ball imaging, can resolve intravoxel white matter 
fiber crossing as well as white matter insertions into cortex. The 
ability of q-ball imaging to resolve complex intravoxel fiber 
architecture eliminates a key obstacle to mapping neural 
connectivity in the human brain noninvasively
(Tuch et al., Neuron, 2003 abstract)”.



FIG. 2. Reconstruction of the diffusion ODF 
from the diffusion signal using the FRT. 
The diffusion data are taken from a single 
voxel from the data set described under 
Methods. The sampling and reconstruction 
schemes are also described under 
Methods. (a) Diffusion signal sampled on 
fivefold tessellated icosahedron (m 252). 
The signal intensity is indicated by the size 
and color (white  yellow  red) of the dots on 
the sphere. (b) Regridding of diffusion 
signal onto set of equators around vertices 
of fivefold tessellated dodecahedron (k n 
48  755  36240 points). (c) Diffusion ODF 
calculated using FRT. (d) Color-coded 
spherical polar plot rendering of ODF. (e) 
Min–max normalized ODF.



FIG. 7. ODF map of the intersection 
between the optic radiation and the 
splenium of the corpus callosum. 
The ODFs are rendered according to 
the scheme described in Theory, 
Visualization. The magnified view at 
right shows the crossing between 
splenium of the corpus callosum, the 
tapetum,and the optic radiation. af, 
arcuate fasciculus; mog, middle 
occipital gyrus; or, optic radiation; 
os, occipital sulcus; scc, splenium of 
the corpus callosum; sog, superior 
occipital gyrus; ta, tapetum.



Statistics of DTI data

• Registration of data between observers

• Image artifacts

• Image noise

The largest statistical problems (noise sources) are

The main statistical approach has been based on 
using the tensor parameters or derived quantities 
(e.g., FA).

I explain a new method that I think has good theory  
and great promise (Schwartzman, Dougherty, Taylor).



• The valid region of 
positive-definite (pd) 
matrices is bounded 
by a cone

The problem with positive definite matrices
(Schwartzman, dissertation, 2006)

20, 0, 0

a c
c b

a b ab c

⎛ ⎞
⎜ ⎟
⎝ ⎠
> > − >



The problem with positive definite matrices

• The weighted sum (positive 

weights) of pd-matrices remains 

positive definite

1

2

1 2

0
0

, 0,   ( ) 0

t

t

t

x Q x
x Q x
if a b then x aQ bQ x

>

>

> + >

• But, the differences between two pd-

matrices may not be positive definite

• Adding even small amounts of noise 

to the entries of a pd-matrix may not 

result in a pd-matrix



• It is advantageous to 
work in a representation 
where sums and 
differences, or adding 
symmetric noise, 
preserves the positive-
definite characteristic
• The log transformation 
has these properties

Log transformation of the pd-matrix

1 2

1

exp( log( ) log( ))
exp(log( ) )

a Q b Q
Q N

+
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, ( )
log( ) log( )
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exp(log( )) log(exp( ))

t

t

t
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=

=
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= =

Definition: Log and Exp of matrices

PD character is preserved in log domain

Symmetric Gaussian noise



Log-normal references from INRIA

V. Arsigny, P. Fillard, X. Pennec, and N. 
Ayache, “Fast and simple calculus on 
tensors in the Log-Euclidean framework,” in 
MICCAI’05, LNCS.

C. Lenglet, M. Rousson, R. Deriche, and O. 
Faugeras, “Statistics on multivariate normal 
distributions: A geometric approach and its 
application to diffusion tensor MRI,”
Research Report 5242, INRIA, 2004.

P. Fletcher and S. Joshi, “Principal 
geodesic analysis on symmetric spaces: 
Statistics of diffusion tensors.,” in CVAMIA 
and MMBIA, 2004, LNCS 3117, pp. 87–98.

X. Pennec, P. Fillard, and N. Ayache, “A 
Riemannian framework for tensor 
computing,” IJCV, vol. 66, no. 1, Jan. 2006, 
Also as INRIA Research Report (RR) 5255.
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PD character is preserved in log domain

Symmetric Gaussian noise



• Schwartzman et al. 
model tensor (positive-
definite matrix) noise as 
Gaussian noise in the log-
transform domain

Log-normal distribution from Stanford
(Schwartzman, et al. 2006)

4 0
0 1

X ⎛ ⎞
= ⎜ ⎟
⎝ ⎠

One hundred random ellipses generated from a 
log-normal distribution based on the original 
matrix

Example: Symmetric Gaussian noise, variance 0.25.

exp(log( ) )X X N= +



• Schwartzman et al. 
model tensor (positive-
definite matrix) noise as 
Gaussian noise in the log-
transform domain

Log-normal distribution 
(Schwartzman, et al. 2006)

Using this model they develop a 
set of statistical tests to compare 
the full tensor.  These are:

•Omnibus test

•Eigenvalue tests

•Eigenvector tests



Atlases

• DTI measurements do not have equal statistical power 
throughout the white matter; partly measurement and partly 
processing

• The processing required to compare two groups includes 
steps (co-registration) have a significant impact on the result

• A good atlas will 
• Summarize the mean data after co-registration 
• The reliability of the ‘typical’ measurement.
• May be built for different groups (adults vs. children; 
female vs. male; so forth)
• Be available freely for download



DTI atlases
(Dougherty et al., 2005, NYAS)

A slice from an atlas 
summarizing 53 
children’s DTI 
measurements (N=53). 

(A) Mean fractional 
anisotropy (FA). 

(B) Standard deviation of FA. 
(C)The principal diffusion 

direction (PDD): S/I, 
superior/inferior; A/P, 
anterior/posterior; R/L, 
right/left. 

(D)PDD reliability is 
represented by the 
angular dispersion (in 
degrees). 

Scale bar: 1 cm.



Fiber Tractography



Can We Understand These Data By 
Estimating Fiber Tracts (DTI-FT)?

Many interesting algorithm 
issues
– Algorithm thresholds (direction, FA)
– Confidence intervals, probabilistic 
reasoning
– Spatial sampling

• Samples are sparse, but directions 
are fine
• Interpolation to intermediate 
positions

– Spatial co-registration between 
modalities (T1, fMRI) and subjects
– Validation needed



Fiber Tractography Overview

• Background - Deterministic algorithms 
(Conturo, Mori, Basser)

• Current developments - Probabilistic 
algorithms

• # mathematicians > # empirical 
validations

• Fiber tractography statistics and 
metrics an open field



Deterministic methods
Streamline Tracking Techniques (STT)

• Connect-the-voxels (Conturo)

• FACT (Mori, DTIStudio)

• Path-integral method (Basser,Tuch)

www.ltd.jhu.edu/explore_inventions/index.html?MSID=259&JCatName=PS2&Show=Detail



Connect-the-Voxels
(Conturo et al., 1999; PNAS)

• Super-samples the tensor field 
(e.g., resample from 2.5 mm 
to 0.5mm)

• Bi-directionally follow voxels in 
PDD direction (on the grid)

• Stopping rule:  Tensor 
anisotropy becomes small.

0.5 mm super-sampled data



Connect-the-Voxels
(Conturo et al., 1999; PNAS)

• Super-samples the tensor field 
(e.g., resample from 2.5 mm 
to 0.5mm)

• Bi-directionally follow voxels in 
PDD direction (on the grid)

• Stopping rule:  Tensor 
anisotropy becomes small.

0.5 mm super-sampled data



Fiber Assignment by Continuous Tracking 
(FACT; Mori et al., 1999)

Mori et al. (1999). Three-Dimensional Tracking of 
Axonal Projections in the Brain by Magnetic Resonance 
Imaging. Annals of Neurology.

Xue et al. (1999) In Vivo Three-Dimensional 
Reconstruction of Rat Brain Axonal Projections by 
Diffusion Tensor Imaging. MRM.

• Starting in a seed voxel, step in 
PDD until voxel edge

• Use tensor from the next voxel
• Continue in PDD until the next 

edge (variable step size)
• Paths fall between data samples; 

separates tensor sampling 
resolution and path resolution

Critique of Connect-the-voxels



Fiber Assignment by Continuous Tracking 
(FACT; Mori et al., 1999)

Mori et al. (1999). Three-Dimensional Tracking of 
Axonal Projections in the Brain by Magnetic Resonance 
Imaging. Annals of Neurology.

Xue et al. (1999) In Vivo Three-Dimensional 
Reconstruction of Rat Brain Axonal Projections by 
Diffusion Tensor Imaging. MRM.

• Starting in a seed voxel, step in 
PDD until voxel edge

• Use tensor from the next voxel
• Continue in PDD until the next 

edge (variable step size)
• Paths fall between data samples; 

separates tensor sampling 
resolution and path resolution

Modified algorithm



Path-Integral Method 
(Basser et al., 2000)

• Treat principal diffusion 
direction (PDD) as path 
tangent 

• Uses tensor interpolation
• Estimate path integral 

using:
– Euler method (simple)
– Runge-Kutta (4th order 

typical)
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Basser et al. (2000). 
In Vivo Fiber Tractography Using DT-MRI Data. MRM

Numerical Recipes 
(Press et al., p. 711)
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yn+1

h step size=



Tensor data



Start the path in the PDD at a seed
Many seeds will be used



Interpolate a new tensor at path endpoint



Take next step based on interpolation



Repeat until termination condition



Terminates for angle



Terminates for isotropy



Validation and Examples



Figure 6. Four viewing angles 
show 3D depictions of callosal 
fibers. A, Anterior view; B, left 
lateral view; C, superior view; D, 
oblique view from right anterior 
angle. Corticocortical
connections through corpus 
callosum (cc) are magenta. 
Subset of the tracts that project 
to temporal lobe (tapetum) are 
pink. 



Atlas of 
human white 

matter
(Mori and collaborators)



FT Estimates from left occipital seeds
(Dougherty et al., PNAS, 2005)



FTs from left occipital that pass through CC



Same calculation using right hemisphere data



Excellent overlap 
(centroid ~ 0.5mm) 

in CC from 
independent left 

and right occipital 
estimates; 

50 children, too
(Dougherty, PNAS, 2005)

5mm



Repeated in group of 50 children 
(Dougherty, NYAS, 2005)



Acquired alexia: Callosal Lesion

Figure 1 from Mao-Draayer & Panitch (2004), Alexia without agraphia in multiple schlerosis...

LR



Forceps lesion location 
(average brain)



Fiber tracts predict lesion in callosum



Fiber tract dissection reveals a consistent organization of 
commissural fibers within the corpus callosum

Dougherty, xxx



Probabilistic methods

• Connection probabilities

• Find the most likely paths

Many proposed algorithms.  See 
references and keep going from there.



Characterization and Propagation of Uncertainty in
Diffusion-Weighted MR Imaging

(Behrens et al., 2003, MRM)

“… we may draw a sample from the posterior pdf on fiber direction at each point 
in space and construct the streamline (henceforth referred to as a “probabilistic 
streamline”) from A given these directions. Computationally, this process is 
extremely cheap. Samples from the local pdfs at each voxel have already been 
generated, so to generate a single probabilistic streamline from seed point A, 
referring to the current “front” of the streamline as z, it is sufficient simply to start z 
at A and:

● Select a random sample, (θ, ϕ) from P(θ, ϕ|Y) at z. 
● Move z a distance s along (θ, ϕ) 
● Repeat until stopping criterion is met.

This probabilistic streamline is said to connect A to all points B along its path. By 
drawing many such samples, we may build the spatial pdf of P(A B |Y) for all 
B. We may then discretize this distribution into voxels by simply counting 
the number of probabilistic streamlines which pass through a voxel B, and 
dividing by the total number of probabilistic streamlines. (p. 1084)”



“Tracing connectivity distributions 
from individual seed voxels. Voxels 
are color-coded according to 
whether the probability of pathways 
traveling through that voxel is high 
(yellow) or low (red). … From a 
voxel in putative LGN, the 
connectivity distribution was traced 
anteriorly along the optic tract, and 
posteriorly to the visual cortex, 
consistent with the well established 
anatomy of the visual system. 
“(Figure 1, caption)



Example of probability along the path
(Friman et al., IEEE-TMI, 2006)

Three thousand fiber samples 
initiated in the splenium of 
Corpus callosum. The coloring 
indicates how the probability 
evolves along the fiber paths 
according to Jones et al.
Jones et al., “Determining and visualizing 
uncertainty in estimates of fiber orientation from 
diffusion tensor MRI,” Magn. Reson. Med., vol. 
49, no. 1, pp. 7–12, 2003.



MetroTrac: Finding the most likely paths
(Sherbondy et al., 200N)

• Scoring

•Symmetry

•Independence

• Samplers

• Inference



MetroTrac:  MT-CC connections
(Sherbondy et al., 200N)

• 2 ROIs (red)

• Ventricle (gold)

• MetroTrac path (green) 

estimate from hMT+ to CC



DTI and Fiber Tractography Software

• FMRIB (http://www.fmrib.ox.ac.uk/fsl/)

• DTIStudio(http://lbam.med.jhmi.edu/DTIuser/DTIuser.asp)

• dtiQuery (http://graphics.stanford.edu/projects/dti/dti-query/)

• Camino  (http://www.cs.ucl.ac.uk/research/medic/camino/)

• NAMIC (http://www.na-mic.org/Wiki/index.php/Main_Page)



End



Example: Epilepsy 

• Intractable epilepsy
– Candidate for resection
– Identification of seizure locus

• Measure seizing circuits 
– In human using (MR)
– Cellular basis in animal models

• Theory: Span the measurement 
scales
– Predict mean diffusivity post- and 

inter-ictal based on cellular 
(neural/glial) mechanisms from animal 
models

– Optimize MR sequences for diagnosis

Visualized using 
diffusion tensor imaging 
and fiber tractography

Patient 
HP

Portion of 
Circuit of 

Papez

CC

A Portion of Circuit of Papez, 
often implicated in MTL epilepsy

From Brian Wandell



Postmortem dissections provide coarse mapping of white 
matter



RH

LH

Ben-Shachar, Eckert, Dougherty, in preparation

Fiber tract dissection 
reveals separate routes 
that connect Brodmann
areas 44 and 45 with 
posterior language 
areas 

BA45
BA44

BA45
BA44



Diffusion tensor imaging references 
 

Textbook 
 
Functional Magnetic Resonance Imaging 
Huettel, Song and McCarthy 
Sinauer Press 
(Huettel et al., 2004) 
 
The Basics of MRI 
Joseph Hornak  
http://www.cis.rit.edu/htbooks/mri/  

Reviews 
 
(Basser, 1995; Basser and Jones, 2002) 
(Basser and Pierpaoli, 1996) 
(Le Bihan et al., 2001) 
(Beaulieu, 2002) 
(Tuch et al., 2002; Tuch, 2004) 
 

Additional References, as if you need more 
 
Applications 
(Basser et al., 2000; Deutsch et al., 2005) – Reading Development 
(Beaulieu et al., 2005) – Reading development 
(Gross et al., 2006) - Epilepsy 
(Jones et al., 2005) - Schizophrenia 
 
Fiber Tractography 
(Basser et al., 2000) 
(Dougherty et al., 2005a; Dougherty et al., 2005b) 
(Conturo et al., 1999) 
(Mori et al., 1999; Mori et al., 2001; Wakana et al., 2004) 
(Catani et al., 2002; Jones et al., 2002; Catani et al., 2003) 
(Westin et al., 2002; Friman and Westin, 2005; Friman et al., 2006) 
 
Conference links 
 
International Society for Magnetic Resonance in Medicine  
http://www.ismrm.org/06/Session62.htm 
 
2006 IEEE Symposium  



Biomedical Imaging: From Nano to Macro Symposium  
 
 
References 
 
Basser PJ (1995) Inferring microstructural features and the physiological state of tissues 

from diffusion-weighted images. NMR Biomed 8:333-344. 
Basser PJ, Pierpaoli C (1996) Microstructural and physiological features of tissues 

elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 111:209-219. 
Basser PJ, Jones DK (2002) Diffusion-tensor MRI: theory, experimental design and data 

analysis - a technical review. NMR Biomed 15:456-467. 
Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A (2000) In vivo fiber tractography 

using DT-MRI data. Magn Reson Med 44:625-632. 
Beaulieu C (2002) The basis of anisotropic water diffusion in the nervous system - a 

technical review. NMR Biomed 15:435-455. 
Beaulieu C, Plewes C, Paulson LA, Roy D, Snook L, Concha L, Phillips L (2005) 

Imaging brain connectivity in children with diverse reading ability. Neuroimage 
25:1266-1271. 

Catani M, Howard RJ, Pajevic S, Jones DK (2002) Virtual in vivo interactive dissection 
of white matter fasciculi in the human brain. Neuroimage 17:77-94. 

Catani M, Jones DK, Donato R, Ffytche DH (2003) Occipito-temporal connections in the 
human brain. Brain 126:2093-2107. 

Conturo TE, Lori NF, Cull TS, Akbudak E, Snyder AZ, Shimony JS, McKinstry RC, 
Burton H, Raichle ME (1999) Tracking neuronal fiber pathways in the living 
human brain. Proc Natl Acad Sci U S A 96:10422-10427. 

Deutsch GK, Dougherty RF, Bammer R, Siok WT, Gabrieli JD, Wandell B (2005) 
Children's reading performance is correlated with white matter structure measured 
by diffusion tensor imaging. Cortex 41:354-363. 

Dougherty RF, Ben-Shachar M, Bammer R, Brewer AA, Wandell BA (2005a) Functional 
organization of human occipital-callosal fiber tracts. Proc Natl Acad Sci U S A 
102:7350-7355. 

Dougherty RF, Ben-Shachar M, Deutsch G, Potanina P, Bammer R, Wandell BA (2005b) 
Occipital-callosal pathways in children: Validation and atlas development. Ann N 
Y Acad Sci 1064:98-112. 

Friman O, Westin CF (2005) Uncertainty in white matter fiber tractography. Med Image 
Comput Comput Assist Interv Int Conf Med Image Comput Comput Assist Interv 
8:107-114. 

Friman O, Farneback G, Westin CF (2006) A Bayesian approach for stochastic white 
matter tractography. IEEE Trans Med Imaging 25:965-978. 

Gross DW, Concha L, Beaulieu C (2006) Extratemporal white matter abnormalities in 
mesial temporal lobe epilepsy demonstrated with diffusion tensor imaging. 
Epilepsia 47:1360-1363. 

Huettel S, Song A, McCarthy G (2004) Functional magnetic resonance imaging. 
Sunderland, Mass.: Sinauer Associates. 



Jones DK, Griffin LD, Alexander DC, Catani M, Horsfield MA, Howard R, Williams SC 
(2002) Spatial normalization and averaging of diffusion tensor MRI data sets. 
Neuroimage 17:592-617. 

Jones DK, Catani M, Pierpaoli C, Reeves SJ, Shergill SS, O'Sullivan M, Maguire P, 
Horsfield MA, Simmons A, Williams SC, Howard RJ (2005) A diffusion tensor 
magnetic resonance imaging study of frontal cortex connections in very-late-onset 
schizophrenia-like psychosis. Am J Geriatr Psychiatry 13:1092-1099. 

Le Bihan D, Mangin JF, Poupon C, Clark CA, Pappata S, Molko N, Chabriat H (2001) 
Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 
13:534-546. 

Mori S, Crain BJ, Chacko VP, van Zijl PC (1999) Three-dimensional tracking of axonal 
projections in the brain by magnetic resonance imaging. Ann Neurol 45:265-269. 

Mori S, Itoh R, Zhang J, Kaufmann WE, van Zijl PC, Solaiyappan M, Yarowsky P 
(2001) Diffusion tensor imaging of the developing mouse brain. Magn Reson 
Med 46:18-23. 

Tuch DS (2004) Q-ball imaging. Magn Reson Med 52:1358-1372. 
Tuch DS, Reese TG, Wiegell MR, Makris N, Belliveau JW, Wedeen VJ (2002) High 

angular resolution diffusion imaging reveals intravoxel white matter fiber 
heterogeneity. Magn Reson Med 48:577-582. 

Wakana S, Jiang H, Nagae-Poetscher LM, van Zijl PC, Mori S (2004) Fiber tract-based 
atlas of human white matter anatomy. Radiology 230:77-87. 

Westin CF, Maier SE, Mamata H, Nabavi A, Jolesz FA, Kikinis R (2002) Processing and 
visualization for diffusion tensor MRI. Med Image Anal 6:93-108. 

 
 


