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What is Biology?

+“A branch of knowledge that deals with living
organisms and vital processes”

+The hottest scientific frontier of our times *
* Many great processes have been figured out
* Much is still unknown

+Tremendous impact on Medicine . 5

* Both diagnosis, prognosis, and treatment
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*Used to make bread and beer

3 *The simplest cell that still resembles human cells

Biological Systems are Complex
*The System is NOT just a sum of its parts
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What is Systems Biology?

“Systems biology is the study of the interactions between the
components of a biological system, and how these
interactions give rise to the function and behavior of that

system”

* The last decades lead to revolution on how we can
examine and understand biological systems

Characterized by
* High-throughput assays
* Integration of multiple forms of experiments & knowledge
* Mathematical modeling

The Age of Genomes

404 Complete Microbial Genomes (Thousands in progress)
31 Complete Eukaryotic Genomes (315 in progress!)
3 Complete Plant Genomes (6 in progress)

Bacteria Eukaryote Animal Human
1.6Mb 13Mb 100Mb 3Gb
1600 genes  ~6000 genes ~20,000 genes ~30,000 genes?

Individual Genomes
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“And that's why we need a computer.”

Ask Not What Systems Biology Can do
For you....

BRITONS

YOU

JOIN YOUR GOUNTRY'S Y

GOD SAVE THE KING

Why Biology for NIPS Crowd?

+ Quantity

* Data-intense discipline: Too vast for manual
interpretation

+ Systematic
* Collection of data on all genes/proteins/...
+ Multi-faceted

* Measurements of complementary aspects of cellular
function, development and disease states

 Challenge of integration and fusion of multiple data

Has the potential to be medically applicative!

Flow of Information in Biology

The “Post-Genomic Era”
Systematic is Not Just More
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DNA RNA Protein Phenotype
+ Genomic + Quantity + Quantity + Genetic
sequences + Structure + Location interventions
+ Variations + Degradation + Modifications + Environmental
within a rate + Interactions interventions

population ... .. ...
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DNA RNA Protein Phenotype
Recipe Working The resulting .
(in safe) copy dish RO
10
Outline
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DNA Protein Phenotype

+Stores genetically inherited information

+Sequence of four nucleotide types (A, C, G, T)

+Two complementary strands creating base pairs (bp)
+105 bp in bacteria, 3x10°in humans 6 X103 in wheat




DNA the molecule of life

Trillions of cells "
v

chromosomes

Each cell:

® 46 human
chromosomes

© 2 meters of
DNA
Hy J

* 3 billion DNA
subunits (the
bases: A, T, C, G)
* Approximately
30,000 genes
code for proteins
that perform most 4
life functions protein »

Y6 010085

Understanding Genome Sequences

~3,289,000,000 characters:

aattgtgctctgcaaattatgatagtgatctgtatttactacgtgeatat
attttgggccagtgaatttttttctaagctaatatagttatttggacttt
tgacatgactttgtgtttaattaaaa tt gt
tgtaagcttgtaaaaaaattcaaacaatgcagacaaatgtgtcetegeagt
cttccactcagtatcatttttgtttgtaccttatcagaaatgtttctatg
tacaagtctttaaaatcatttcgaacttgctttgtccactgagtatatta
tggacatcttttca tatagatgtgt aaaa
taaaacaaaaaactgattcggecgggtacggtggetcacgectgtaatee
cagcactttgggagatcgaggagggaggatcacctgaggtcaggagttac
agacatggagaaaccccgtctctactaaaaatacaaaattagectggegt
ggtggegeatgectgtaateecagetact

tcg tgcgg tegeacegttyg
cactccageetgg gtctea
aaacctgatacatggtatgggaagtacattgtttaaacaatgcatggaga
tttaggttgtttccagtttttactggcacagatacggcaatgaatataat
tg ttectagaagtgg

tttatg ttcat,

Open Reading Frame

ATGCTCAGCGTGACCTCA . . . CAGCGTTAA
H_H_H_H_H_H_/ \ A A J
M L S vV T s . .. Q R STP

+Protein-encoding DNA sequence consists of a
sequence of 3 letter codons

+Starts with the START codon (ATG)
+Ends with a STOP codon (TAA, TAG, or TGA)

Finding Open Reading Frames

ATGCTCAGCGTGACCTCA . . . CAGCGTTAA
H_H_H_H_H_H_/ \ A A J
M L S vV T s . .. Q R STP

Try all possible starting points
+3 possible offsets
+2 possible strands

Simple algorithm finds all ORFs in a genome
+Many of these are spurious (are not real genes)
+How do we focus on the real ones?
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Using Additional Genomes

Basic premise
“What is important is conserved”

Evolution = Variation + Selection
e Variation is random
* Selection reflects function

Idea:

+ Instead of studying a single genome, compare
related genomes

+ A real open reading frame will be conserved

17

Phylogentic Tree of Yeasts

S. cerevisiae

~10M years S. paradoxus
S. mikatae

S. bayanus
C. glabrata
S. castellii
K. lactis

A. gossypii
K. waltii

D. hansenii

C. albicans

Y. lipolytica

N. crassa

M. graminearum

M. grisea

A. nidulans

18 Kellis et al, Nature 2003




Evolution of Open Reading Frame

S. cerevisiae ATGCTCAG ACCTCA .
S. paradoxus ATGCTCAG ACATCA .
S. mikatae ATGCTCAG AC

S. bayanus  ATGCTCAG ---AC

Conserved Frame shift
positions changes interpretation
of downstream seq
Variable
positions

‘A deletion

[ Conserved

Examples [0 Variable

Spurious ORF
AIG

Confirmed ORF

Greedy algorithm to find conserved ORFs surprisingly

effective (> 99% accuracy) on verified yeast data

—

20 [Kellis et al, Nature 2003]

Defining Conservation/ Conserved

. / Variable
Naive approach

AAAC
+Consensus between all ACAC
species AAAC
Problem: RaCatia
+ Rough grained = A T CIC
+ Ignores distances between L Aacca
species AGCA
«Ignores the tree topology AGCaA
ATCC

Goal: 0
% conserv 100 33 5555

+More sensitive and robust

; methods

Probabilistic Model of Evolution

Aardvark Bison Chimp Dog Elephant
Random variables — sequence at current day taxa or
at ancestors
Potentials/Conditional distribution — represent the
probability of evolutionary changes along each
” branch

Parameterization of Phylogenies

Assumptions:
+Positions (columns) are independent of each other

eEach branch is a reversible continuous time
discrete state Markov process

P(a—c|t +1")=ZP(G —=bIt)P(b —=clt)
P(a)P(a — b |t)=P(b)P(b —alt)

governed by a rate matrix Q
d
Q.= EP((I —bl1)

=0
P(a—>b|t)=[e'°]ab
23 ;

Conserved vs. unconserved

Two hypotheses:

il

2 3 41 2 3 4 1

Conserved Unconserved
Short branches Long branches
(fewer mutations) (more mutations)

P(position | unconserved)

P(position | conserved)
24 [Boffelli et al, Science 2003]

Use log




Genes Are Better Conserved Challenges
o . Other types of genomic elements
o ' A +Small polypeptides (peptohormones,
| | | * neuropeptides)
% 1 i" ﬂ. | o U +RNA coding genes
Eaa 4w DN ’ A *IRNA, tRNA, snoRNA. ..
2 . l’ Wi/ i | ] YR )
16 'wl h ‘\ A A 5 IPIW \ My ,‘\n’. I * miRNA
Y R R <. ‘ +Regulatory regions
g m:m Smiequence 1;;)00 . ° e 50:equence (bp; o e
e me————
25 [Boffelli et al, Science 2003] 27
Regulatory Elements Transcription Factor Binding Sites
+ Relatively short words (6-20bp)
4 PN + Recognition is not perfect
g g b ‘ ,W,; ¢ Binding sites allow variations
'¢‘; M ¥ 1 + Often conserved
A1 K A
’ LAY\
«~ WV WK U

general transcription

factors
o) V0R) RNA polymerase
D

TATA box

gene regulatory.

[4

A

start of
gy; p-268 promoter transcription

upstream

Challenges Outline

Other types of genomic elements
+Small polypeptides (peptohormones,

>
]

neuropeptides)
+RNA coding genes
*rRNA, tRNA, snoRNA...
* miRNA DNA RNA Protein Phenotype
+Regulatory regions + Copied from DNA template

+ Conveys information (MRNA)

. . . + Can also perform function (tRNA, rRNA, ...)
Recognition of elements without comparisons + Single stranded, four nucleotide types (A.C, G, U)
+Clearly sequence contains enough information to + For each expressed gene there can be as few as 1

“parse” it within the living cell molecule and up to 10,000 molecules per cell.
0 31
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Gene Expression

Lymphold
(Lymph Node
Orthymus)

+Same DNA content
+Very different phenotype
+Difference is in regulation of expression of genes

33

High Throughput Gene Expression

RNA expression
levels of 10,000s
of genes in

one experiment

Dynamic Measurements

— _ Conditions =

+Time courses

+Different perturbations
(genetic & environmental)

+Biopsies from different
patient populations

Coos

_—
>6X >6X
repressed  induced

Gasch et al. Mol. Cell 2001

Expression: Supervised Approaches

Labeled samples

Feature selection
+

Classification

|

—
-
P—

+Potential diagnosis/prognosis tool
+Characterizes the disease state
= insights about underlying processes

36 Segman et al, Mol. Psych. 2005

Expression: Unsupervised

=

elation with |v1)

Gene Corr

Gena Corre.

37 Eisen ot al. PNAS 1938; Alter et al, PNAS 2000

Papers =>Compendia

REPORT 1
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Can c/"?e datasets from Whitehead and StanforcN
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39 Segal et al Nat. Gen. 2004




*Tumor type specific
«Tissue specific
*Generic across many tumors

Segal et al Nat. Gen. 2004

Goal: Reconstruct Cellular Networks

Biocarta. http://www.biocarta.com/

First Attempt: Bayesian networks

G
One gene = One variable

+An instance: microarray sample
Use standard approaches for learning networks

42 Friedman et al, JCB 2000

Learned Network (fragment)

Module 25
(59 genes)

+ Gasch et al. 2001: Yeast
Response to Environmental
Stress

«173 Yeast arrays T
#2355 Genes
+50 modules

Module 4
(42 genes)

' Module 1
(55 genes)

44

Second Attempt: Module Networks

MAPK of cell
wall integrity
pathway

RLM1 CRH1 YPS3 PTP2

Ope-commonjeguylationfunctign
Regulabor]—1- '.Ig Regriatiom F,-Iation
|

1 Function-1 11 Function | 1 Function-3 |

Idea: enforce common regulatory program

+Statistical robustness: Regulation programs are
estimated from m*k samples

+Organization of genes into regulatory modules:

Concise biological description
43 Segal et al, Nature Genetics 2003

unction-4-|

Validation

How do we evaluate ourselves?
+Statistical validation
* Ability to generalize (cross validation test)

150

o
o
23 100
=0
[T =
= G 50 "
T Bayesian
< o <= network
ma performance
© S -50
cs
&~ 100
i I

150

0 ' 100 200 300 400 500

45 Number of modules




Validation

How do we evaluate ourselves?
+Statistical validation
+Biological interpretation

* Annotation database

* Literature reports

* Other experiments, potentially different
experiment types

46

Interpretation
) |GeneXPress Hypotheses

+ Function

+ Dynamics

47 Profiles + Regulation

Visualization & Interpretation
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Expression

= HAP4 Motif
29/55; p<2x10-13

= STRE (Msn2/4)
32/55; p<10°

bl

= = HAP4+STRE
17/29; p<7x10-10

1 CHapa)
!

-
et ¥
"

1

5 Msn4 § _l_IT

Gene set coherence (GO, MIPS, KEGG)

Match between regulator and targets

Match between regulator and condition/logic

Match between regulator and cis-reg motif

48 p-values using hypergeometric dist; corrected for multiple hypotheses

ggcﬂMMT h -

Validation

How do we evaluate ourselves?
+Statistical validation
+Biological interpretation
+Experiments
* Test causal predictions in the real system
* Lead to additional understanding beyond the
prediction
» Experimental validation of three regulators
+3/3 successful results

49 Segal et al, Nature Genetics 2003

Challenges

+New methodologies for the huge amount of existing
RNA profiles

* Meta analysis

* Better mechanistic models

* Contrasting new profiles with existing databases
* Visualization

+Other measurements
* Degradation rates
¢ Localization

Outline

i>éi>

+Proteins are the main executers of cellular function
+Building blocks are 20 different amino-acid
+Synthesized from mRNA template

+Acquires a sequence dependent 3-D conformation

+Proteomics: Systematic Study of Proteins
51

Protein

DNA Phenotype




Why Measure Proteins?

+RNA Level # Protein level
Protein quantity is not a direct

function of RNA levels % § ),

+Protein Level # Activity level
Activity of proteins is regulated
by many additional mechanisms

¢ Cellular localization C .
* Post-translational - -
) . P .1
modifications < :tf O\\T‘ >

Phosphatase

* Co-factors (protein, RNA, ...)

e

52

Challenges in Proteomics

+Problematic recognition:
No generic mechanism to detect different protein

forms
+Thousands of different proteins in the typical cell

+Protein abundances vary over several orders of
magnitude

53

Making a Protein Generic

T

s
LAl

« Tags make a protein generic

« Underlying assumption is that the tag does not
change the protein

< All proteins have the same tag
1. Inability to pool strains
2. Each experiment is done on a “different” strain

54

TAP-Tag Libraries for Abundance

~4500 Yeast strains have been TAP tagged

NH, = Protein — b— COOH

-

Hexokinase

)
Standards

*How much is each protein expressed?
*What is the proteome under different conditions?

55

Why Study Protein Complexes?

+# Most proteins in the cell work in protein
complexes or through protein/protein interactions

+# To understand how proteins function we must
know:
+ - who they interact with
- when do they interact
- where do they interact
- what is the outcome of that interaction

56

Using TAP-Tag to Find Complexes

s




Large Scale Pull Downs Provide
Information on Protein Complexes

Consolidated PPI subset
(9074)

PPI / PPI
Gavinetal. | 293 Krogan et al.
(7123)

(6532)
AN

*Both labs used the same proteins as bait
*Each lab got slightly different results
*The results depended dramatically on analysis method
*Gavin et al. Nature 2006

*Krogan et al. Nature 2006

Direct Indirect

o BT+
Scaled Score

*Gavin et al. Nature 2006

*Krogan et al. Nature 2006

59

We can now define a yeast “interactome”

«Isnt full use of data
«Static picture

Making a Protein Generic

sy,

7%
LAl

Fusion protein

1. Fluorescent proteins allow us to visualize the
proteins within the cell.

2. Allow us to measure individual cells and the
variation/ noise within a population

61

Cellular Localization Using GFP Tags
What can it teach us?

A library of yeast GFP fusion strains has been A collection of cloned C. elegans promoters
used to localize nearly all yeast proteins is being created for similar purposes

Genome Research 14:2169-2175, 2004

Huh et al Nature 2003
62

Challenges in Fluorescence-based
Approaches

+Better Vision processing will allow to do this
in High-Throughput and answer questions
like:
* Changes in localization in response to cellular
cues

» Changes in localization in response to
environment cues

* Changes in localization in various genetic
backgrounds

* Dynamics of localization changes

.'
63

10



THROUGHPUT
THE MAJOR BOTTLENECK

High Throughput Flow Cytometer

+7 seconds/sample
+~50,000 counts per sample

66

Noise in Biological Systems

b 70
All measurements M ATP synthesis
E @ Proteasome TCA cycle
50 4 Vacuolar acidification
3 3
& 30
=
=} E .
104 el 2 . :
% foR - n
04 A spssdlas A et . . A‘
R R R T T T T A R A
0 0.02 0.04 0.06 0.08 0.10

1/\Protein abundance (a.u.)
+ Measurement of 10,000 individual cells allows measurement
of variation (noise) in a biological context
« factors that affect levels of noise in gene expression:
* Abundance, mode of transcriptional regulation, sub-
68 cellular localization

Nature 441, 840-846(15 June 2006)|

Single Cell Measurements:
Flow Cytometry

+ Cells pass through a flow cell
one at a time

+ Lasers focused on the flow
cell excite fluorescent protein
fusions

+ Allows multiple
measurements (cell size,
shape, DNA content)

Applications:

+ Protein abundance

+ Protein-protein interactions

+ Single-cell measurements
65

Comparison of mRNA to Protein Levels Allows
Identification of Post-transcriptional Regulation

Compare 45
+Rich media o Lo
« Poor media 2 2] Ty
s o 2.4
= mr—%-;’..
S %
z o
. S 1 &
Observed behaviors o | . Sepels-
+No change in both g‘a‘ -2 i e
+ Coordinated change -
+ Change in protein, but 41 x =
not mMRNA -4 -2 0 2 4
Log, Poor/Rich mRNA
67 Newman et al Nature 2006
Challenges

Proteomics is in its infancy - easier to make an impact

+ Integrating this data with other proteomic/genomic data to
better predict protein function

+ Higher Throughput methods such as flow cytometry will
allow generation of varied data: Different growth
conditions, Cell cycle, Stress, Mating

+ Tagging is mammalian cells becoming more feasable -
near future should bring proteomic data on human cells

69
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Outline
DNA RNA Protein Phenotype

+ Traits that selection can apply to, the observable characteristics
+ Mutations in the DNA can cause a change in a phenotype.

* Shape and size

* Growth rate

* How many years your liver can survive alcohol damage....

70

Starting to Probe the Cellular Network

Genetic Interaction

*The effect of a mutation in one gene on the phenotype of a
mutation in a second gene

«Different type of interaction - not physical

Single Gene KO

+Phenotypic Screen

Increasing fitness defect

YPGal 152
YPGal 15b
Minimal 15a
Minimal 15b
1 MNaCl 15a

YDL023C
GPD1
HOG1
PBS2
YGR182C

7§iaver et ., 2002

72

What is a genetic interaction (Epistasis)?

The effect of a mutation in one gene on the phenotype of a mutation in a second gene.

Genotype Growth Rate

WT 1

A geneA X (x<=1)
AgeneB y (y<=1)
A geneA A geneB xy (Product)

DIFFERENT TYPE OF INTERACTION - NOT PHYSICAL

74

What is a genetic interaction?
Genetic Interaction Growth Rate

None Xy
Aggravating less than xy
Alleviating greater than xy

A X X X

|
g\/ k\ /Y
C Cc

75

Systematic Method of Analyzing Double
Mutants

+ Double deletion mutants are made systematically
+ Colony sizes are measured in high throughput

Tong et al., 2001
76
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E-MAPS

Enictaciec Mini

N-Linked Glyc
N-Linked Glyc
N-Linked Glyc,
N-Linked Glyc
N-Linked Glyc
N-Linked Glyc

DIE2 (ALG10) _ N-Linked Glyel
psTS N-Linked Glyc]
psT3 N-Linked Glyc|
WBP1™ N-Linked Glyc,
psT1” N-Linked Glyc]

3 0 3z

7 Aggravating Alleviating iner et al., Cell 2005

Defining Protein Complexes

Co-complex proteins have

(A% * similar interaction patterns
« alleviating interactions
Off
52:3I88%r - 520a8a5888
295E555225885283888

ARR4
MDM39
RMD7

Aggravating E'aﬁz Alleviating
78

GET

Challenges for the future

+Only a small fraction of the information has been
utilized in E-MAPS made so far

+E-MAPS to cover all yeast cellular processes to
come out until the end of 2007

+Extending this to human cells is now feasible
using gene silencing techniques

+Amount of data scales exponentially - Higher
organisms - more genes

Outline

\bi}@éﬁ.@

Why Integrate Data?

Protein Phenotype
— _/
~
Combined Insights

+Model-free approach

+Model-based approach
80

Model-Free Approach
Location Expression Phenotype Binding sites

Gene Nuc Cyto Mito | Rich | Poor Salt Kan RAP1 HSF1

GCN4

YALO01C

YALOO2W

YALOO3W

YAR040W

YAR041C

+Treat different observations about elements as
multivariate data

* Clustering

» Statistical tests
82
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Genes

Finding bi-clusters in large compendium of functional

data
8

3 Tanay et al PNAS 2004

Model-Based Approach

Model-Free Approach

Pros:
+No assumptions about data
* Unbiased
* Can be applied to many data types
+Can use existing tools to analyze combined data
Cons:
+No assumptions about data
* Interpretation is post-analysis
* No sanity check

+Cannot deal with data from different modalities
o (interactions, other types of genetic elements)

Relevant data:

+Expression under environmental perturbations
+Expression under transcription factors KOs
+Predicted binding sites of transcription factors
+Protein-DNA interactions of transcription factors

*

o

Explaining Expression

O

Ve

Protein levels/location of transcription factors

Explaining Expression

DNA binding proteins
O/ g Non-coding

Gene / —> /M

Activ'gtqr ﬂ?epressor
RNA transcript

Binding sites Coding region
Key Question:

+Can we explain changes in expression?

General concept:

+ Transcription factor binding sites in promoter region

should “explain” changes in transcription
86

A Stab at Model-Based Analysis

Sequence

Motifs | [TCGACTGC GCAGTT)

Motif TCGACTGC

Profiles GATAC

Expresswn _ -
ggProfiles ]

14



Unified Probabilistic Model

Sequence | [Sequence

SRS

) AKKAX
Motifs RN
i Experiment
Motif
Profiles Gene
Expression Expression
agProfiles egal et al, RECOMB 2002, ISMB 2003

Unified Probabilistic Model

Sequence [Sequence

RS

Observed

X
Motifs “‘ >
- Experiment
Motif
Profiles
Expression Expression Observed
giProfiles egal et al, RECOMB 2002, ISMB 2003
Model-Based Approach
Pros:

eIncorporates biological principles

» Suggests mechanisms

* Incorporate diverse data modalities
+Declarative semantics -- easy to extend
Cons:
+Reconstruction depends on the model
+Biological principles

* Bias

93

Unified Probabilistic Model

Sequence [Sequence

@Q@%@?}

Motifs
i Experiment
Motif
Profiles Gene
Expression Expression
goProfiles egal et al, RECOMB 2002, ISMB 2003

Probabilistic Model

Regulatory Modules

o

Motif profile Expression profile

Sequence [Sequence

@Q@%@?}

genes

Motifs
i Experiment
Motif
Profiles
Expression Expression
g Profiles egal et al, RECOMB 2002, ISMB 2003

Physical Interactions

94
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Physical Interactions

Interaction between two proteins makes it more
probable that they

* share a function

* reside in the same cellular localization
* their expression is coordinated

* have similar genetic interactions

Can we exploit this to make better inference of
properties of proteins?

95

Relational Markov Network

+Probabilistic patterns hold for all groups of objects
+Represent local probabilistic dependencies

PN PM] o

~lo|o|o|

0
1
0
1

|m|o]

___ée

||| =|o]o|o|of
=
H
m|

|o|m|o|~|o|~|olt

|| o|o|~|~|o|of
n|o| ko klo|o|o|e

96

Relational Markov Network
+Compact model
+Allows to infer protein attributes by combining

* Interaction network topology (observed)
» Observations about neighboring proteins

97

Adding Noisy Observations
+Add class for experimental assay

+View assay result as stochastic function (CPD) of
underlying biology

r e 7 Directed CPD
|

)

1

98

Uncertainty About Interactions

+Add interaction assays as noisy sensors for
interactions

&
| Mitochndri ——
‘

|
I

ia

|
| H
|
|
T
)
{

99

Design Plan

e | p i) i
JQ}@, @ ﬁﬂ@l@ﬂE@“ﬂL@

gl
« By g H.* e 2 go

] ,
1 ¢ °

Simultaneous @

prediction ﬂ
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Relational Markov Network

+Add potentials over interactions

101

Discussion

+Every day papers are published with high-
throughput data that is not analyzed completely or
not used in all ways possible

+The bottlenecks right now are the time and ideas to
analyze the data

104

Relational Markov Models

Combine

+(Noisy) interaction assays

+(Noisy) protein attribute assays
+Preferences over network structures

To find a coherent prediction of the interaction
network

102

The Need for Computational Methods

Experiment

Modeling & Low-level
Simulation analysis

% High-level
analysis

106

What are the Options?

+Analyze published data
* Abundant, easy to obtain
* Method oriented
* Don’t have to bump into biologists
* Two million other groups have that data too
+Collaborate with an experimental group
* Be involved in all stages of project
* Understand the system and the data better
* Have priority on the data
* Involved in generating & testing biological hypotheses
* Goal oriented

+Start your own experimental group...(yeah, sure)
107

Questions to Keep in Mind

Crucial questions to ask about biological problems

+What quantities are measured?
Which aspects of the biological systems are probed
+How are they measured?
How this measurement represents the underlying
system? Bias and noise characteristics of the data

+Why are these measurements interesting?

+Which conclusions will make the biggest
impact?

108
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