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What is Biology?

“A branch of knowledge that deals with living
organisms and vital processes”

The hottest scientific frontier of our times
•Many great processes have been figured out
•Much is still unknown

Tremendous impact on Medicine
•Both diagnosis, prognosis, and treatment
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Bakers Yeast Saccharomyces Cereviciae

•Used to make bread and beer
•The simplest cell that still resembles human cells 4

Biological Systems are Complex
•The System is NOT just a sum of its parts
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What is Systems Biology?
“Systems biology is the study of the interactions between the

components of a biological system, and how these
interactions give rise to the function and behavior of that
system”

• The last decades lead to revolution on how we can
examine and understand biological systems

Characterized by
• High-throughput assays
• Integration of multiple forms of experiments & knowledge
• Mathematical modeling
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The Age of Genomes

Bacteria
1.6Mb

1600 genes

95 96 97 98 99 00 01

Eukaryote
13Mb

~6000 genes

Animal
100Mb

~20,000 genes

Human
3Gb

~30,000 genes?
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404 Complete Microbial Genomes  (Thousands in progress)
31 Complete Eukaryotic Genomes (315 in progress!)
3 Complete Plant Genomes (6 in progress)

Individual Genomes?
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Ask Not What Systems Biology Can do
For you….
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Why Biology for NIPS Crowd?

Quantity
• Data-intense discipline: Too vast for manual

interpretation
Systematic

• Collection of data on all genes/proteins/…
Multi-faceted

• Measurements of complementary aspects of  cellular
function, development and disease states

• Challenge of integration and fusion of multiple data

Has the potential to be medically applicative!
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Flow of Information in Biology

               

Recipe
(in safe)

Working
copy

The resulting
dish The Review

DNA RNA Protein Phenotype
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The “Post-Genomic Era”
Systematic is Not Just More

DNA
 Genomic

sequences
 Variations

within a
population

 …

               

RNA
 Quantity
 Structure
 Degradation

rate
 …

Protein
 Quantity
 Location
 Modifications
 Interactions
 …

Phenotype
 Genetic

interventions
 Environmental

interventions
 …

Assays
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Outline

ProteinDNA

     

RNA

          

Phenotype

Stores genetically inherited information 
Sequence of four nucleotide types (A, C, G, T)
Two complementary strands creating base pairs (bp)
105 bp in bacteria, 3x109 in humans 6 X1013 in wheat
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Understanding Genome Sequences
~3,289,000,000 characters:

aattgtgctctgcaaattatgatagtgatctgtatttactacgtgcatat
attttgggccagtgaatttttttctaagctaatatagttatttggacttt
tgacatgactttgtgtttaattaaaacaaaaaaagaaattgcagaagtgt
tgtaagcttgtaaaaaaattcaaacaatgcagacaaatgtgtctcgcagt
cttccactcagtatcatttttgtttgtaccttatcagaaatgtttctatg
tacaagtctttaaaatcatttcgaacttgctttgtccactgagtatatta
tggacatcttttcatggcaggacatatagatgtgttaatggcattaaaaa
taaaacaaaaaactgattcggccgggtacggtggctcacgcctgtaatcc
cagcactttgggagatcgaggagggaggatcacctgaggtcaggagttac
agacatggagaaaccccgtctctactaaaaatacaaaattagcctggcgt
ggtggcgcatgcctgtaatcccagctactcgggaggctgaggcaggagaa
tcgcttgaacccgggagcggaggttgcggtgagccgagatcgcaccgttg
cactccagcctgggcgacagagcgaaactgtctcaaacaaacaaacaaaa
aaacctgatacatggtatgggaagtacattgtttaaacaatgcatggaga
tttaggttgtttccagtttttactggcacagatacggcaatgaatataat
tttatgtatacattcatacaaatatatcggtggaaaattcctagaagtgg
aatggctgggtcagtgggcattcatattgagaaattggaaggatgttgtc
aaactctgcaaatcagagtattttagtcttaacctctcttcttcacaccc
ttttccttggaagaaagctaaatttagacttttaaacacaaaactccatt
ttgagacccctgaaaatctgggttcaaagtgtttgaaaattaaagcagag
gctttaatttgtacttatttaggtataatttgtactttaaagttgttcca

. . .

Goal: 
    Identify components encoded in the DNA sequence
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Open Reading Frame

Protein-encoding DNA sequence consists of a
sequence of 3 letter codons

Starts with the START codon (ATG)
Ends with a STOP codon (TAA, TAG, or TGA)

ATGCTCAGCGTGACCTCA . . . CAGCGTTAA

 M  L  S  V  T  S . . .   Q  R STP
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Finding Open Reading Frames

Try all possible starting points
3 possible offsets
2 possible strands

Simple algorithm finds all ORFs in a genome
Many of these are spurious (are not real genes)
How do we focus on the real ones?

ATGCTCAGCGTGACCTCA . . . CAGCGTTAA

 M  L  S  V  T  S . . .   Q  R STP
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Using Additional Genomes
Basic premise

“What is important is conserved”

Evolution = Variation + Selection
• Variation is random
• Selection reflects function

Idea:
 Instead of studying a single genome, compare

related genomes
 A real open reading frame will be conserved

18 Kellis et al, Nature 2003

S. cerevisiae

S. paradoxus
S. mikatae
S. bayanus

C. glabrata
S. castellii
K. lactis

A. gossypii
K. waltii

D. hansenii
C. albicans

Y. lipolytica
N. crassa

M. graminearum

M. grisea
A. nidulans

S. pombe

~10M years

Phylogentic Tree of Yeasts
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Evolution of Open Reading Frame

ATGCTCAGCGTGACCTCA . . . 
ATGCTCAGCGTGACATCA . . . 
ATGCTCAGGGTGACA--A . . . 
ATGCTCAGG---ACA--A . . . 

S. cerevisiae
S. paradoxus
S. mikatae
S. bayanus

Conserved
positions

Variable
positions

A deletion

Frame shift
changes interpretation
of downstream seq

20

Frame shift

[Kellis et al, Nature 2003]

Sequencing
error

Examples
Spurious ORF

Confirmed ORF

Conserved
Variable

ATG not
conserved

Greedy algorithm to find conserved ORFs surprisingly
effective (> 99% accuracy) on verified yeast data
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Defining Conservation

Naïve approach
Consensus between all

species
Problem:
Rough grained
 Ignores distances between

species
 Ignores the tree topology

Goal:
More sensitive and robust

methods
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   100% conserv 33 5555
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Probabilistic Model of Evolution

Random variables – sequence at current day taxa or
at ancestors

Potentials/Conditional distribution – represent the
probability of evolutionary changes along each
branch

Aardvark Bison Chimp Dog Elephant
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Parameterization of Phylogenies
Assumptions:
Positions (columns) are independent of each other
Each branch is a reversible continuous time

discrete state Markov process

governed by a rate matrix Q
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Two hypotheses:

Use

2 3 4 12 3 4 1
Conserved

Short branches
(fewer mutations)

Unconserved
Long branches

(more mutations)

Conserved vs. unconserved

[Boffelli et al, Science 2003]
)conserved|position(

)dunconserve|position(
log

P
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Genes Are Better Conserved

[Boffelli et al, Science 2003]
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Challenges

Other types of genomic elements
Small polypeptides (peptohormones,

neuropeptides)
RNA coding genes

• rRNA, tRNA, snoRNA…
•miRNA

Regulatory regions

28

Regulatory Elements

*Essential Cell Biology; p.268
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Transcription Factor Binding Sites
 Relatively short words (6-20bp)
 Recognition is not perfect

• Binding sites allow variations
 Often conserved

30

Challenges

Other types of genomic elements
Small polypeptides (peptohormones,

neuropeptides)
RNA coding genes

• rRNA, tRNA, snoRNA…
•miRNA

Regulatory regions

Recognition of elements without comparisons
Clearly sequence contains enough information to

“parse” it within the living cell
31

Outline

ProteinDNA

     

RNA

          

Phenotype

  Copied from DNA template
  Conveys information (mRNA)
  Can also perform function (tRNA, rRNA, …)
  Single stranded, four nucleotide types (A,C, G, U)
  For each expressed gene there can be as few as 1

molecule and up to 10,000 molecules per cell.
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Gene Expression

Same DNA content
Very different phenotype
Difference is in regulation of expression of genes

34

High Throughput Gene Expression

RNA expression
levels of 10,000s
of genes in
one experiment

Extract

Microarray

Transcription Translation

35

Dynamic Measurements

Time courses
Different perturbations

(genetic & environmental)
Biopsies from different

patient populations
…

Conditions

G
en

es

Gasch et al. Mol. Cell 2001 36

Expression: Supervised Approaches
Labeled samples

Feature selection
+

Classification

Cl
as

sifi
er

 c
on

fid
en

ce

P-value =< 0.027

Segman et al, Mol. Psych. 2005

Potential diagnosis/prognosis tool
Characterizes the disease state

⇒ insights about underlying processes

37

Expression: Unsupervised

Eisen et al. PNAS 1998; Alter et al, PNAS 2000

ClusterPCA

39

Papers Compendia

Breast cancer

Fibroblast 
EWS/FLI

Fibroblast 
infection

Fibroblast 
serum

Gliomas

HeLa cell cycle

Leukemia

Liver cancer
Lung cancer

NCI60

Neuro tumors

Prostate
cancer

Stimulated 
immune

Stimulated 
PBMC

Various tumors Viral infection

B lymphoma

26 datasets from Whitehead and Stanford

Segal et al Nat. Gen. 2004
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Translation, degradation
& folding

Cell cycle

Apoptosis

Immune

IF & keratins

Cytoskeleton & ECM

Cell lines

Chromatin

Apoptosis
DNA damage /
nucleotide metabolism

Immune
MMPs

Signaling &
growth regulation
Signaling

Immune
Muscle
Immune

Immune

Adhesion & signaling

Synapse & signaling
Metabolism

Breast

Cytoskeleton (IF & MT)

Signaling &
development
Protein biosynthesis

Nucleotide metabolism
Signaling,  development
& oxidative phos.

Metabolism, detox &
immune

ECM

Signaling &
growth regulation

Signaling

Signaling

Signaling

Immune

Tissues

Signaling & CNS

Metabolism, detox &
immune

>0.4

>0.4

0

Segal et al Nat. Gen. 2004

Cancer types

M
od

ul
es Cancer span wide range of phenomena

•Tumor type specific
•Tissue specific
•Generic across many tumors

41

Goal: Reconstruct Cellular Networks

Biocarta. http://www.biocarta.com/
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One gene  One variable
An instance: microarray sample
Use standard approaches for learning networks

First Attempt: Bayesian networks

Gene A

Gene C
Gene D

Gene E

Gene B

Friedman et al, JCB 2000 43

Second Attempt: Module Networks

Idea: enforce common regulatory program
Statistical robustness: Regulation programs are

estimated from m*k samples
Organization of genes into regulatory modules:

Concise biological description

One common regulation function

SLT2

RLM1

MAPK of cell
wall integrity

pathway

CRH1 YPS3 PTP2

Regulation
Function 1

Regulation
Function 2

Regulation
Function 3

Regulation
Function 4

Segal et al, Nature Genetics 2003
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Learned Network (fragment)

Atp1 Atp3

Module 1
(55 genes)

Atp16

Hap4 Mth1

Module 4
(42 genes)

Kin82Tpk1

Module 25
(59 genes)

Nrg1

Module 2
(64 genes)

Msn4 Usv1Tpk2

Gasch et al. 2001: Yeast
Response to Environmental
Stress

173 Yeast arrays
2355 Genes
50 modules

45

Validation

How do we evaluate ourselves?
Statistical validation

•Ability to generalize (cross validation test)
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Number of modules

-150

-100

-50

0

50

100

150

0 100 200 300 400 500

Bayesian
network

performance
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Validation

How do we evaluate ourselves?
Statistical validation
Biological interpretation

•Annotation database
• Literature reports
•Other experiments, potentially different

experiment types

47

Visualization & Interpretation

Molecular Pathways
(KEGG GeneMAPP)

Functional
annotations

GO

Expression
profiles

Cis-regulatory
motifs

Visualization
Interpretation
Hypotheses
 Function
 Dynamics
 Regulation

48
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3 )Hap4

Msn4

Gene set coherence (GO, MIPS, KEGG)

Match between regulator and targets

Match between regulator and cis-reg motif

Match between regulator and condition/logic

HAP4 Motif
29/55; p<2x10-13 

STRE (Msn2/4)
32/55; p<103 

HAP4+STRE
17/29; p<7x10-10  

p-values using hypergeometric dist; corrected for multiple hypotheses 49

Validation

How do we evaluate ourselves?
Statistical validation
Biological interpretation
Experiments

• Test causal predictions in the real system
• Lead to additional understanding beyond the

prediction
•Experimental validation of three regulators

♦3/3 successful results

Segal et al, Nature Genetics 2003

50

Challenges

New methodologies for the huge amount of existing
RNA profiles
•Meta analysis
•Better mechanistic models
•Contrasting new profiles with existing databases
•Visualization

Other measurements
•Degradation rates
• Localization

51

Outline

ProteinDNA

     

RNA

          

Phenotype

Proteins are the main executers of cellular function
Building blocks are 20 different amino-acid
Synthesized from mRNA template
Acquires a sequence dependent 3-D conformation
Proteomics: Systematic Study of Proteins
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Why Measure Proteins?

RNA Level ≠ Protein level
Protein quantity is not a direct
function of RNA levels

Protein Level ≠ Activity level
Activity of proteins is regulated
by many additional mechanisms
•Cellular localization
•Post-translational

modifications
•Co-factors (protein, RNA, …)

53

Challenges in Proteomics

Problematic recognition:
No generic mechanism to detect different protein
forms

Thousands of different proteins in the typical cell

Protein abundances vary over several orders of
magnitude
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Making a Protein Generic

• Tags make a protein generic
• Underlying assumption is that the tag does not

change the protein
• All proteins have the same tag

1. Inability to pool strains
2. Each experiment is done on a “different” strain

TAG

55

TAP-Tag Libraries for Abundance

•How much is each protein expressed?
•What is the proteome under different conditions?

~4500 Yeast strains have been TAP tagged

56

# Most proteins in the cell work in protein
complexes or through protein/protein interactions

# To understand how proteins function we must
know:

 - who they interact with
 - when do they interact
 - where do they interact
 - what is the outcome of that interaction

Why Study Protein Complexes?

.

Using TAP-Tag to Find Complexes
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*Gavin et al. Nature 2006 

*Krogan et al. Nature 2006

Large Scale Pull Downs Provide
Information on Protein Complexes

•Both labs used the same proteins as bait
•Each lab got slightly different results
•The results depended dramatically on analysis method

59

*Gavin et al. Nature 2006 

*Krogan et al. Nature 2006

.

We can now define a yeast “interactome”

•Isnt full use of data
•Static picture

61

Making a Protein Generic

1. Fluorescent proteins allow us to visualize the
proteins within the cell.

2. Allow us to measure individual cells and the
variation/ noise within a population

62

Cellular Localization Using GFP Tags
What can it teach us?

A library of yeast GFP fusion strains has been
used to localize nearly all yeast proteins

A collection of cloned C. elegans promoters
is being created for similar purposes

Huh et al Nature 2003 Genome Research 14:2169-2175, 2004
63

Challenges in Fluorescence-based
Approaches

Better Vision processing will allow to do this
in High-Throughput and answer questions
like:
•Changes in localization in response to cellular

cues
•Changes in localization in response to

environment cues
•Changes in localization in various genetic

backgrounds
•Dynamics of localization changes



11

.

THROUGHPUT
THE MAJOR BOTTLENECK

65

Single Cell Measurements:
Flow Cytometry

Cells pass through a flow cell
one at a time

Lasers focused on the flow
cell excite fluorescent protein
fusions

Allows multiple
measurements (cell size,
shape, DNA content)

Applications:
Protein abundance
Protein-protein interactions
Single-cell measurements

66

High Throughput Flow Cytometer

7 seconds/sample
~50,000 counts per sample

67

Comparison of mRNA to Protein Levels Allows
Identification of Post-transcriptional Regulation

Newman et al Nature 2006

Compare
Rich media
Poor media

Observed behaviors
No change in both
Coordinated change
Change in protein, but

not mRNA
Log2 Poor/Rich mRNA

Lo
g 2
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n
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Noise in Biological Systems

Measurement of 10,000 individual cells allows measurement
of variation (noise) in a biological context

 factors that affect levels of noise in gene expression:
• Abundance, mode of transcriptional regulation, sub-

cellular localization Nature 441, 840-846(15 June 2006) 69

Proteomics is in its infancy - easier to make an impact

 Integrating this data with other proteomic/genomic data to
better predict protein function

 Higher Throughput methods such as flow cytometry will
allow generation of varied data: Different growth
conditions, Cell cycle, Stress, Mating

 Tagging is mammalian cells becoming more feasable -
near future should bring proteomic data on human cells

Challenges
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Outline

ProteinDNA

     

RNA

          

Phenotype

Traits that selection can apply to, the observable characteristics
Mutations in the DNA can cause a change in a phenotype.

• Shape and size
• Growth rate
• How many years your liver can survive alcohol damage….

71

Single Gene KO

Phenotypic Screen

Giaver et ., 2002

72

Starting to Probe the Cellular Network

Genetic Interaction
•The effect of a mutation in one gene on the phenotype of a
mutation in a second gene
•Different type of interaction - not physical

74

What is a genetic interaction (Epistasis)?

Genotype    Growth Rate
WT 1
Δ geneA x (x <= 1)
Δ geneB y (y <= 1)

Δ geneA Δ geneB xy (Product)

The effect of a mutation in one gene on the phenotype of a mutation in a second gene.

DIFFERENT TYPE OF INTERACTION - NOT PHYSICAL

75

××
A

B
C

X

Y

What is a genetic interaction?
Genetic Interaction Growth Rate
None xy
Aggravating less than xy
Alleviating greater than xy

A

B
C

X

Y

×
×

76

Systematic Method of Analyzing Double
Mutants

Tong et al., 2001

 Double deletion mutants are made systematically
 Colony sizes are measured in high throughput

∆X:NAT
∆Y:KAN

X∆X:NAT ∆Y:KAN

WT ∆X:NAT ∆Y:KAN
∆X:NAT
∆Y:KAN
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E-MAPS

Epistasis Mini Array Profiles

Aggravating Alleviating Schuldiner et al., Cell 2005 78

Defining Protein Complexes

On

Off

B

CA

Co-complex proteins have
• similar interaction patterns
• alleviating interactions

Aggravating Alleviating

.

Challenges for the future
Only a small fraction of the information has been
utilized in E-MAPS made so far
E-MAPS to cover all yeast cellular processes to
come out until the end of 2007
Extending this to human cells is now feasible
using gene silencing techniques
Amount of data scales exponentially - Higher
organisms - more genes

80

Outline

Model-free approach
Model-based approach

ProteinDNA

     

RNA

          

Phenotype

Combined Insights

81

Why Integrate Data?

attttgggccagtgaatttttttctaagctaatatagttatttggacttt
tgacatgactttgtgtttaattaaaacaaaaaaagaaattgcagaagtgt
tgtaagcttgtaaaaaaattcaaacaatgcagacaaatgtgtctcgcagt
cttccactcagtatcatttttgtttgtaccttatcagaaatgtttctatg
tacaagtctttaaaatcatttcgaacttgctttgtccactgagtatatta
tggacatcttttcatggcaggacatatagatgtgttaatggcattaaaaa
taaaacaaaaaactgattcggccgggtacggtggctcacgcctgtaatcc
aattgtgctctgcaaattatgatagtgatctgtatttactacgtgcatatHigh-throughput assays:

•Observations about one aspect of the system
•Often noisy and less reliable than traditional
assays

•Provide partial account of the system

82

Model-Free Approach

Treat different observations about elements as
multivariate data
•Clustering
•Statistical tests

Kan

YAR041C
YAR040W
YAL003W
YAL002W
YAL001C

GCN4HSF1RAP1SaltPoorRichMitoCytoNucGene

Location Expression Phenotype Binding sites
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Model-Free Approach

Finding bi-clusters in large compendium of functional
data

Tanay et al PNAS 2004 84

Model-Free Approach

Pros:
No assumptions about data

•Unbiased
•Can be applied to many data types

Can use existing tools to analyze combined data
Cons:
No assumptions about data

• Interpretation is post-analysis
•No sanity check

Cannot deal with data from different modalities
(interactions, other types of genetic elements)

85

Model-Based Approach

attttgggccagtgaatttttttctaagctaatatagttatttggacttt
tgacatgactttgtgtttaattaaaacaaaaaaagaaattgcagaagtgt
tgtaagcttgtaaaaaaattcaaacaatgcagacaaatgtgtctcgcagt
cttccactcagtatcatttttgtttgtaccttatcagaaatgtttctatg
tacaagtctttaaaatcatttcgaacttgctttgtccactgagtatatta
tggacatcttttcatggcaggacatatagatgtgttaatggcattaaaaa
taaaacaaaaaactgattcggccgggtacggtggctcacgcctgtaatcc
aattgtgctctgcaaattatgatagtgatctgtatttactacgtgcatat

What is a model?

“A description of a process that could have
 generated the observed data”

 Idealized, simplified, cartoonish
Describes the system & how it generates

observations
86

Explaining Expression

Key Question:
Can we explain changes in expression?

General concept:
Transcription factor binding sites in promoter region

should “explain” changes in transcription

DNA binding proteins

Non-coding region

RNA transcript

Gene

Activator Repressor

Binding sites Coding region

87

Explaining Expression

Relevant data:
Expression under environmental perturbations
Expression under transcription factors KOs
Predicted binding sites of transcription factors
Protein-DNA interactions of transcription factors
Protein levels/location of transcription factors
… 88

ACGATGCTAGTGTAGCTGATGCTGATCGATCGTACGTGCTAGCTAGCTAGCTAGCTAGCTAGCTAGC
AGCTAGCTCGACTGCTTTGTGGGGCCTTGTGTGCTCAAACACACACAACACCAAATGTGCTTTGTGGT
ACTGATGATCGTAGTAACCACTGTCGATGATGCTGTGGGGGGTATCGATGCATACCACCCCCCGCTC
GATCGATCGTAGCTAGCTAGCTGACTGATCAAAAACACCATACGCCCCCCGTCGCTGCTCGTAGCATG
CTAGCTAGCTGATCGATCAGCTACGATCGACTGATCGTAGCTAGCTACTTTTTTTTTTTTGCTAGCAC
CCAACTGACTGATCGTAGTCAGTACGTACGATCGTGACTGATCGCTCGTCGTCGATGCATCGTACGTA
GCTACGTAGCATGCTAGCTGCTCGCAAAAAAAAAACGTCGTCGATCGTAGCTGCTCGCCCCCCCCCCC
CGACTGATCGTAGCTAGCTGATCGATCGATCGATCGTAGCTGAATTATATATATATATATACGGCG

Sequence TCGACTGC

TCGACTGC

TCGACTGC

TCGACTGC
GATAC

GATAC

GATAC
GATAC

CCAAT
CCAAT

CCAAT
CCAAT

TCGACTGC

CCAAT
CCAAT

CCAAT
GCAGTT

GCAGTT

GCAGTT

TCGACTGC CCAATGATAC GCAGTTMotifs

TCGACTGC

GATAC
+

CCAAT
+

GCAGTT
CCAATMotif

Profiles

Expression
Profiles

A Stab at Model-Based Analysis

G
enes
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Unified Probabilistic Model

Experiment

Gene

Expression

Sequence
S4S1 S2 S3

R2R1 R3

Sequence

Motifs

Motif
Profiles

Expression
Profiles Segal et al, RECOMB 2002, ISMB 2003 90

Experiment

Expression

Unified Probabilistic Model

Gene

Sequence
S4S1 S2 S3

R1 R2 R3

Module

Sequence

Motifs

Motif
Profiles

Expression
Profiles Segal et al, RECOMB 2002, ISMB 2003
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Unified Probabilistic Model

Experiment

Gene

Expression

Module

Sequence
S4S1 S2 S3

R1 R2 R3

ID

Level

Sequence

Motifs

Motif
Profiles

Expression
Profiles Segal et al, RECOMB 2002, ISMB 2003

Observed

Observed

92

Probabilistic Model

Experiment

Gene

Expression

Module

Sequence
S4S1 S2 S3

R1 R2 R3

ID

Level

Sequence

Motifs

Motif
Profiles

Expression
Profiles

ge
ne

s

Motif profile Expression profile

Regulatory Modules

Segal et al, RECOMB 2002, ISMB 2003

93

Model-Based Approach

Pros:
Incorporates biological principles

•Suggests mechanisms
• Incorporate diverse data modalities

Declarative semantics -- easy to extend
Cons:
Reconstruction depends on the model
Biological principles

•Bias

94

Physical Interactions
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Physical Interactions

Interaction between two proteins makes it more
probable that they
• share a function
• reside in the same cellular localization
• their expression is coordinated
• have similar genetic interactions
•…

Can we exploit this to make better inference of
properties of proteins?

96

Protein

Cytoplasm

Protein
Nucleus

Mitochndria

Cytoplasm

Interaction
Exists

 2111
 0011
-1101
 0001
-1110
 0010
 0100
 0000
 φI.EP2.NP1.N

Relational Markov Network

Probabilistic patterns hold for all groups of objects
Represent local probabilistic dependencies
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φ

1
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1
0
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Relational Markov Network

Compact model

Allows to infer protein attributes by combining
• Interaction network topology (observed)
•Observations about neighboring proteins
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Add class for experimental assay
View assay result as stochastic function (CPD) of

underlying biology

Adding Noisy Observations

GFP image
Cytoplasm

Nucleus

Mitochndria

Protein

Cytoplasm

Protein
Nucleus

Mitochndria

Cytoplasm

Interaction
Exists

Nucleus

Mitochndria

Directed CPD
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Uncertainty About Interactions
Add interaction assays as noisy sensors for

interactions

GFP image
Cytoplasm

Nucleus

Mitochndria

Protein

Cytoplasm

Protein
Nucleus

Mitochndria

Cytoplasm

Interaction
Exists

Nucleus

Mitochndria

Assay
Interact
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Design Plan

Relational Markov
Network

Pre7 Pre9

Tbf1
Cdk8

Med17

Cln5

Taf10

Pup3 Pre5

Med5

Srb1

Med1Taf1 Mcm1

Simultaneous
prediction
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Potential over

Interaction
Exists

Relational Markov Network

Add potentials over interactions

Protein
Nucleus

Protein
Nucleus

Protein
NucleusInteraction

Exists

Interaction
Exists
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Relational Markov Models

Combine
(Noisy) interaction assays
(Noisy) protein attribute assays
Preferences over network structures

To find a coherent prediction of the interaction
network
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Discussion

Every day papers are published with high-
throughput data that is not analyzed completely or
not used in all ways possible

The bottlenecks right now are the time and ideas to
analyze the data
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The Need for Computational Methods

Experiment

High-level
analysis

Low-level
analysis

Modeling &
Simulation

107

What are the Options?

Analyze published data
• Abundant, easy to obtain
• Method oriented
• Don’t have to bump into biologists
• Two million other groups have that data too

Collaborate with an experimental group
• Be involved in all stages of project
• Understand the system and the data better
• Have priority on the data
• Involved in generating & testing biological hypotheses
• Goal oriented

Start your own experimental group…(yeah, sure)
108

Questions to Keep in Mind

Crucial questions to ask about biological problems
What quantities are measured?

Which aspects of the biological systems are probed
How are they measured?

How this measurement represents the underlying
system? Bias and noise characteristics of the data

Why are these measurements interesting?
Which conclusions will make the biggest

impact?
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