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Scope

• Focus of this talk is on Precision and Personalized 
Medicine

• Intended audience: Machine learners
• Relevant to anyone with interest in personalization

• Domains: education, recommender systems, retail 



Classical view — Randomized Trials, Clinical Practice 
Guidelines and Population models

Problem:

Treatment:

you

• Based on a coarse set of characteristics, define a 
population P.

• Conduct trials to determine Intervention A vs B.
• Define guideline to assign intervention to P.

Often referred to as population models. Does not 
adequately account for individual-specific variability.



Classical view — Randomized Trials, Clinical Practice 
Guidelines and Population models

(1) Indications are coarse.  
(2) Not relevant to many in the population — people with 

multiple diseases or allergies.  

• Example: managing high blood pressure in adults

• “Recommendation 8”:

• In population ≥18 with chronic kidney disease (CKD)

• Initial anti-hypertensive treatment should include:

• (1) ACEI or (2) ARB

• Use for all CKD patients regardless of race or diabetes status

James, Oparil, Carter, et al. 2014

http://jamanetwork.com/journals/jama/fullarticle/1791497?sa=u&ei=g4aeu5f4hquy7abjridobw&ved=0cd0qfjag&usg=afqjcnfsgenxjan3fhzbo_3urte6-tjw7q


Scleroderma - an example

• Systemic autoimmune disease  
Main symptom: skin fibrosis 
Affects many visceral organs—lungs, heart, GI 
tract, kidney, vasculature, and muscles

Affects 300K individuals; 80 other autoimmune diseases — lupus, multiple sclerosis, 
diabetes, Crohn’s — many of which are systemic & highly multiphenotypic. 

Lung

Skin

Kidney

Treatments
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• Will this individual continue to decline? 
• Should we administer immunosuppressants, 

which can be toxic? 
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The need for “precision”/“personalization”
Lung

Skin

Kidney

Treatments

Individual organs 
affected to varying 
extents (size) in a 
variety of ways (color).

Sources of variation: 
• The profile of symptoms over time can vary 
• Response to treatments can vary 
 
(1) Characterize diseases more precisely? Is diabetes one disease 
or many diseases? 
(2) Moving away from coarse rules to algorithms for generating 
targeted treatment plans.



Problem Setting

• (1) Off-line learning: 
• Learn from data about other individuals to generalize 

to a given individual

• (2) Online learning:
• Learn as we collect new data about a given individual 

from repeated measurements

Learning with Control over Data Collection
• (3) Reinforcement Learning:

• Explore to improve model learning

Sequential Data: No Control over Data Collection Process
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Scope

• Focus of this talk is on Precision and Personalized Medicine

• Intended audience:
• Machine Learners

• Relevant to anyone with interest in personalization 

• Key takeaways:
• Provide computational strategies for personalization

• Describe example data
• Introduce concrete applications
• Give intuition into why approach it one way vs another

• Throughout make connections to literature in sub-areas of 
machine learning, reinforcement learning, causal inference, 
and informatics



Overview
• Part 1—Setting up the problem of Individualization

• Example using a chronic disease
• Simple setting: No Treatment Effects
• Bayesian Hierarchical Framework for Individualizing Predictions
• Key ideas: Transfer learning, Multilevel modeling

• Part 2—Estimating Treatment Effects & Individualized Treatment 
Effects
• Example using inpatient data
• Learning from observational data
• Key ideas: Potential Outcomes, Causal Inference for Bias Adjustment, 

BNP  

• Part 3—Causal Predictions 
• Relax assumption from Part 1 about no treatment effects
• Discuss predictions that are robust to changes in physician practice 

behavior

• Part 4—From Predictions to Treatment Rules
• Key ideas: Q-learning, Dynamic Treatment Regimes
• Connections to Reinforcement Learning 

Control 
over Data 
Collection 
Process

No Control 
over Data 
Collection 
Process

}

}



Overview

Control 
over Data 
Collection 
Process

No Control 
over Data 
Collection 
Process
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}
• Part 1—Setting up the problem of Individualization

• Example using a chronic disease
• Simple setting: No Treatment Effects
• Bayesian Hierarchical Framework for Individualizing Predictions
• Key ideas: Transfer learning, Multilevel modeling

• Part 2—Estimating Treatment Effects & Individualized Treatment 
Effects
• Example using inpatient data
• Learning from observational data
• Key ideas: Potential Outcomes, Causal Inference for Bias Adjustment, 

BNP  

• Part 3—Causal Predictions 
• Relax assumption from Part 1 about no treatment effects
• Discuss predictions that are robust to changes in physician practice 

behavior

• Part 4—From Predictions to Treatment Rules
• Key ideas: Q-learning, Dynamic Treatment Regimes
• Connections to Reinforcement Learning 



Individualization and why do we need it?
Develop a predictive model by using regression on 
the observed risk factors

y = f (age, gender, baseline test values)
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Population Precision medicine
Develop a predictive model by using regression on 
the observed risk factors

y = f (age, gender, baseline test values, ….)

●

●

●

●

●●
●

●
●

●

40

60

80

100

120

0 5 10 15
Years Since First Symptom

PF
VC

5yrs
10yrs

Expand the set of covariates to include high-
dimensional molecular measurements

Collins and Varmus, 2015

Ziegler et al. 2012

Shipp et al. 2002

http://www.nejm.org/doi/full/10.1056/nejmp1500523#t=article
http://link.springer.com/article/10.1007/s00439-012-1188-9
http://www.nature.com/nm/journal/v8/n1/abs/nm0102-68.html
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Expand the set of covariates to include high-
dimensional molecular measurements

Collins and Varmus, 2015

Ziegler et al. 2012

Shipp et al. 2002

Is there any other structure we can capture?

http://www.nejm.org/doi/full/10.1056/nejmp1500523#t=article
http://link.springer.com/article/10.1007/s00439-012-1188-9
http://www.nature.com/nm/journal/v8/n1/abs/nm0102-68.html


●

●

●

●

●
●

●
●

●

●

●

●

●

●● ●
●

●●
●
●

●

●

●

●

●●

●

●

●
●●

●

●

●● ●
●● ●

● ● ●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

● ●
●

●
●

●
●

●

●

●

●
● ●

tss pfvc pdlco rvsp

0

25

50

75

0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15
Years Since Diagnosis

M
ar

ke
r V

al
ue Medication

Prednisone
Methotrex
Cyclophosphamide Cytoxan

tss pfvc pdlco rvsp

0

40

80

120

0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15

Skin

Lung
Pulmonary

Vasculature

Heart

Data & Problem Motivation
• Functional markers collected to track organ health
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• Functional markers collected to track organ health

Data & Problem Motivation
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Predicting Disease Trajectories

Function valued-regression  
y = f (age, gender, baseline test values,                          )[�1(t), . . . ,�d(t)]

Expand the set of covariates to include non-
linear functions of time

Bases
Basis 1

Basis 2

Basis 3

Basis 4

�1�1(·)

�2�2(·)

�3�3(·)
�4�4(·)

y(·)
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Predicting Disease Trajectories

Function valued-regression  
y = f (age, gender, baseline test values, ….) 

BUT
this assumes that sources of heterogeneity across 
individuals entirely explained away by observed factors.

Many factors leading to differences in trajectory may be 
unobserved (e.g., difference in genetic mutations, athleticism, 
lifestyle) 
• Account for heterogeneity in disease course due to both 

observed and latent factors Schulam and Saria, 2015

http://pschulam.com/papers/schulam+saria_nips_2015.pdf


Transfer information from others to refine estimates for a 
given individual.

• #1 Specify Latent Variable Models to make inferences about  
latent (individual-specific) sources of heterogeneity

• #2 Learn the transfer hierarchy — i.e. whom to transfer 
from and what to transfer?

• #3 Bayesian formulation to prevent overfitting and learn  
as new data are collected on the individual 



A Gaussian process (GP) is a collection of random variables,

any finite number of which have a joint Gaussian distribution.

Background: Gaussian Processes
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http://www.gaussianprocess.org/gpml/


A Gaussian process (GP) is a collection of random variables,

any finite number of which have a joint Gaussian distribution.

Background: Gaussian Processes
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Disease Subtypes and Latent Mechanism  
Driving Subtypes

http://www.hopkinsarthritis.org/wp-content/uploads/2011/04/image-11.jpg
http://www.slideshare.net/maushard/skin-manifestations-of-scleroderma-by-dr-lorinda-chung-md

. J. Varga, C.P. Denton, and F.M. Wigley. Scleroderma: From Pathogenesis to Comprehensive Management.  
Springer Science & Business Media, 2012.  

State and Sestan, 2012

Subtyping research in other diseases:
Autism:

Cardiovascular disease:

Parkinson’s:Doshi-Velez et al., 2014

De Keulenaer and Brutsaert, 2009

Lewis et al. 2005

Asthma: Anderson 2008

http://www.hopkinsarthritis.org/wp-content/uploads/2011/04/image-11.jpg
http://www.slideshare.net/maushard/skin-manifestations-of-scleroderma-by-dr-lorinda-chung-md
http://science.sciencemag.org/content/337/6100/1301
http://finale.seas.harvard.edu/files/finale/files/cormobidity_cluster.pdf
http://circ.ahajournals.org/content/119/24/3044.short
http://jnnp.bmj.com/content/76/3/343.short
http://www.sciencedirect.com/science/article/pii/S014067360861452X
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Latent Subpopulation Structure

Subpopulation

• Can we learn or make inferences about this systematic 
deviation as we observe more data about this individual?

Two different subpopulations: 
Subtype 1: Decliners who stabilize 
Subtype 2: Those who improve over time
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Latent Individual-specific Structure

Subpopulation

Individuals 
vary within 
subgroups

• Can we learn or make inferences about this systematic 
deviation as we observe more data about this individual?



Bayesian Formulation for Disease Trajectories
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Ramsay and Silverman 2005

http://www.springer.com/la/book/9780387400808
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structure

zi indexes a given subpopulation 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specific
adjustments

Accounting for Latent Sources of Heterogeneity

bi parameters specifying individual-specific  
adjustments
Treated as random effects 

Sub-pop  
structure
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Individual-
specific
adjustments

Accounting for Latent Sources of Heterogeneity

Sub-pop  
structure

explains 
remaining 
noise sources

Schulam, Saria, 2015

http://pschulam.com/papers/schulam+saria_nips_2015.pdf
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Accounting for Latent Sources of Heterogeneity

Sub-pop  
structure

Schulam, Saria, 2015
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Reminder: 
Only means 
are shown.  
Uncertainty  
bands not  
shown

Lawrence, 2004

http://pschulam.com/papers/schulam+saria_nips_2015.pdf
https://papers.nips.cc/paper/2540-gaussian-process-latent-variable-models-for-visualisation-of-high-dimensional-data.pdf


• Use hierarchical Bayes to allow transfer at multiple resolutions. 
Parameters use different subsets of the data:

• Population trajectory: data from all individuals

• Subtype mean trajectories: data from subgroups of similar individuals

• Individual adjustments: repeated measurements on the given individual

• Transient adjustments: trends over short periods of time

Sharing occurs at multiple resolutions



• Use the posterior predictive for online predictions as 
new data are collected. 

• Mean of posterior predictive has an intuitive form: 
replace unobserved individual-specific parameters 
with their expectations given the clinical history.
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Qualitative Analysis
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Schulam, Saria, 2015

http://pschulam.com/papers/schulam+saria_nips_2015.pdf


Missing Data
• We observe the trajectory at a finite number of times

• Do we need to worry about bias due to when the 
measurements were made?

• When we want to model a trajectory there is always 
going to be missing data 

• Is there bias due to when the data are missing?

• When can we use likelihood-based learning?

Little and Rubin, 2014

http://onlinelibrary.wiley.com/book/10.1002/9781119013563


Missing Data Model
• Consider the three-observation example

T1 T2 T3

F (·)

Y1 Y2 Y3

Unobserved trajectory

Noisy observation of 
trajectory at time T

Random observation  
time

Schulam, Saria, 2016

http://pschulam.com/papers/schulam+saria_jmlr_2016.pdf


• For an arbitrary number of observations, the probability 
of the observed data can be factored

Missing Data Model

Z
p(F = f)p(T1:n, Y1:n | F = f)df

=

Z
p(F = f)

nY

i=1

p(Ti | t̄i, ȳi)p(Yi | ti, f)df

=

"
nY

i=1

p(Ti | t̄i, ȳi)

#"Z
p(F = f)

nY

i=1

p(Yi | ti, f)df
#

Sampling  
Model

Trajectory 
Model

Times of 
measurements are 
independent of the 
latent trajectory• Allows fitting of likelihood  

without modeling measurement times

T1 T2 T3

F (·)

Y1 Y2 Y3

Schulam, Saria, 2016

http://pschulam.com/papers/schulam+saria_jmlr_2016.pdf


Missing Data Assumptions
• Note: this is Missing at Random (MAR) 

• The choice of when to measure is based on observed data only.

• Common to decide when to measure based on past observed data

• For example:

• If there are no recent tests, then clinician is more likely to order a new 
test.

• If the past few tests suggest results getting worse, clinician may 
increase frequency of measurement.

• More explicitly, we made the following assumption

• The times at which the trajectory is observed depend on (a) observed 
baseline covariates, and (b) the previous measurement times and 
values of observed time-dependent variables

Little and Rubin, 2014

http://onlinelibrary.wiley.com/book/10.1002/9781119013563


Missing Not at Random (MNAR)
• These assumptions do not always hold

• When the observation times depend on unobserved 
variables, the missing data is Missing Not at Random  

• For example:

• If individuals schedule their own visits, they may only 
have measurements when they feel sick

• If observation times are determined by other time-
dependent variables (e.g. other lab tests) that are not 
in the data

Little and Rubin, 2014

http://onlinelibrary.wiley.com/book/10.1002/9781119013563


General Ideas vs. Domain Specific

• #1 Latent Variable model to account for latent sources of heterogeneity
• #2 Posterior Predictive distribution to prevent overfitting and learn as new 

data are collected on the individual
• #3 Transfer at multiple resolutions

What to take away to new problems?

• #1 No treatment effects
• #2 Choice of basis for the trajectories and noise models should reflect 

properties of the disease data.

Which modeling decisions were specific to this app?

• Choice of hierarchy potentially introduces bias. Generates intermediate 
quantities that are interpretable by clinicians.

Two useful by-products: (1) Couple models, (2) Subtyping



Another example: Chronic Kidney Disease 
Prediction

Futoma et al. 2016Figure 4: Dynamic predictions from our joint model. In each row, the parameters for this individual are refit as more data
is made available (information to the left of the light blue lines is used to refit parameters). Blue circles and x’s correspond
to observed eGFR readings and CVA events, while green correspond to yet-unseen data.

Figure 4 shows an example of dynamic predictions over
time for a test patient. In the three rows of the figure, we
make predictions about the test patient after observing the
first 25%, 50% and 75% of their disease trajectory and ad-
verse events (in this example, CVAs). For each row we re-
learn the patient’s parameters using information to the left
of the vertical light blue line. As we observe more data, the
longitudinal model updates its prediction about future dis-
ease trajectory and provides a reasonable forecast for the
steady decline of this patient’s eGFR. In the second row,
as the model sees that the patient’s trajectory is decreas-
ing faster than in the first row, it correspondingly increases
the probability of a future event. In the third row, after the
model sees the patient’s first CVA event, it further increases
the probability of a future event.

6 DISCUSSION

In this paper, we have proposed a new joint model for lon-
gitudinal and point process data, and applied it to disease
trajectory modeling and prediction of adverse events in pa-
tients with chronic kidney disease. We developed the first
variational inference algorithm for this class of models, al-
lowing us to fit our model to a large set of longitudinal
patient data that is over an order of magnitude the size of
datasets used by related methods. We find that our model
yields good performance on the tasks of predicting future
kidney function and predicting cardiovascular events.

Although our work is a promising first step for develop-
ing predictive models from EHR data and applying them
to real clinical tasks, there are numerous inherent limita-

tions to EHR data [Hersh et al., 2014]. Data quality is of-
ten poor, complicated by inaccurate, inconsistent or miss-
ing information. The EHR at a single organization may fail
to capture the full patient story and all relevant outcomes of
interest, as is the case when patients receive care from mul-
tiple, non-interoperable healthcare systems over time. Rel-
evant patient reported outcomes, such as perceived quality
of life, are rarely captured by EHRs. Events such as death
may not be registered, particularly when patients die out-
side of the hospital. Data may be biased; certain laboratory
tests may be performed only when a clinician suspects an
abnormality. Furthermore, many clinical data are collected
for billing purposes rather than patient care or research, dis-
torting the relative importance of certain elements.

There are many directions in which we plan to extend this
work. Future models will be multivariate in both longitudi-
nal markers and in event processes. Inclusion of additional
longitudinal variables such as blood pressure, albuminuria,
and hemoglobin A1c will be important, since these are
well known to be clinically important for monitoring car-
diovascular and kidney health. Jointly modeling multiple
event processes will allow us to learn correlations between
different types of events. More flexible models, particu-
larly for the event processes, should improve model per-
formance, for instance using Gaussian Process modulated
Poisson processes or Hawkes processes instead of employ-
ing the proportional hazards assumption as we do in this
work. By further refining and deploying a flexible, scalable
model such as ours, ACOs around the country can inter-
vene on high-risk patients and realize the potential benefits
of precision medicine.

• Use clinical markers measured over time (eGFR) to 
dynamically predict the probability of stroke

https://pdfs.semanticscholar.org/9d2b/6f5a9ea2ee320d5fe9b4d241478d2e2e3727.pdf
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• Measurement times are not 
aligned

• Some measurements may never 
be made on an individual

• Rate of measurement varies 
across individuals

• Lung subtypes likely related to skin 
subtype. 

• In systemic diseases, many 
clinical markers are measured to 
monitor different organ systems 

Motivation:

Challenges:

Extending to Multivariate Trajectory Data
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• Need joint models that can flexibly encode complex 
dependencies across markers 

• Classic assumption of Naive Bayes structure is  
incorrect. In general, hard to specify generative model. 
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Model target 
marker conditioned 
on auxiliary 
markers.

Conditional 
random field (CRF) 
to model pairwise 
dependencies
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Coupled Latent 
Variable Models

Schulam, Saria, 2016

http://pschulam.com/papers/schulam+saria_jmlr_2016.pdf


Lung

Skin

Vasculature

GI

• Allows what-if reasoning. 
• Ways to incorporate domain knowledge into individual 

marker-level sub-models. 
• Plug-in / replace better models as they become available. 
• Open question: Calibrated posteriors for specific clinical tasks

Discussion Schulam, Saria, 2016

http://pschulam.com/papers/schulam+saria_jmlr_2016.pdf


Subtypes and Precision Medicine
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• Desired: Identify subgroups with 
distinct underlying biological 
mechanism driving disease.

• Current Approach: Identify 
candidate subtypes via clustering and 
associate with molecular 
determinants. See brief introductory 
review:

• Open question: How do we increase 
the efficiency of subtype discovery 
experiments? 
• Combine high-dimensional 

multivariate data to identify 
subtypes?

• Current approaches (e.g., k-
means with a pre-specified 
distance metric).

• Learning metrics:

Schulam et al., 2015
Eg: Subtypes based on  
disease trajectories

Wang et al., 

Other e.g. of sub-grouping patients: 
Yuen et al., 2002

Sun et al., 2012

Saria, Goldenberg 2015

Doshi-Velez et al., 2014

http://pschulam.com/papers/schulam+wigley+saria_aaai_2015.pdf
http://www.sunlab.org/files/8414/3896/4657/rubik_kdd2015_camera_ready.pdf
http://cancerres.aacrjournals.org/content/62/22/6451.short
http://dl.acm.org/citation.cfm?id=2408740
https://www.eecis.udel.edu/~shatkay/Course/papers/SubtypingSariaGoldberg2015.pdf
http://finale.seas.harvard.edu/files/finale/files/cormobidity_cluster.pdf


• Functional Data Analysis

• Modeling Disease Trajectories

• Dynamical Prediction:

• Personalization

• Multi-resolution/hierarchical models

• Multivariate time-to-event

Related Ideas

Rizopoulos 2011 Proust-Lima et al. 2014Yu et al. 2008

Rizopoulos et al. 2015

Berkovsky et al. 2008 Adomavicius and Tuzhilin 2010

Konstan and Riedl 2012

Gelman and Hill, 2006

Salakhutdinov and Mnih 2008

Rizopoulous and Ghosh, 2011 Andrinopoulou et al. 2014

Wang et al., 2014Ross and Dy, 2013

Ramsay and Silverman 2005 Bahadori et al. 2015

Futoma et al. 2016

Liu and Hauskrecht, 2016

Ghassemi et al. 2014

Yoon et al. 2016

Elibol et al. 2016

Schulam, Arora 2016

Wang et al., 2015

http://onlinelibrary.wiley.com/doi/10.1111/j.1541-0420.2010.01546.x/full
http://smm.sagepub.com/content/23/1/74.short
http://www.tandfonline.com/doi/abs/10.1198/016214507000000400
http://biostatistics.oxfordjournals.org/content/early/2015/08/28/biostatistics.kxv031.short
http://link.springer.com/article/10.1007/s11257-007-9042-9
http://link.springer.com/chapter/10.1007/978-0-387-85820-3_7
http://link.springer.com/article/10.1007/s11257-011-9112-x
http://www.stat.columbia.edu/~gelman/arm/
http://dl.acm.org/citation.cfm?id=1390267
http://onlinelibrary.wiley.com/doi/10.1002/sim.4205/full
http://onlinelibrary.wiley.com/doi/10.1002/sim.6158/abstract
http://cs.nyu.edu/~dsontag/papers/WanSonWan_kdd14.pdf
http://www.ece.neu.edu/fac-ece/jdy/papers/ross-dy-ICML2013.pdf
http://www.springer.com/la/book/9780387400808
http://www.jmlr.org/proceedings/papers/v37/bahadori15.pdf
https://arxiv.org/abs/1608.04615
http://people.cs.pitt.edu/~milos/research/AAAI_2016_Residual_MTS.pdf
http://mghassem.mit.edu/wp-content/uploads/2013/02/ghassemi_naumann_kdd2014.pdf
http://jmlr.org/proceedings/papers/v48/yoon16.pdf
http://finale.seas.harvard.edu/files/finale/files/cross-corpora_unsupervised_learning_of_trajectories_in_autism_spectrum_disorderes.pdf
http://papers.nips.cc/paper/6177-disease-trajectory-maps.pdf
https://arxiv.org/abs/1504.06964


Overview

Control 
over Data 
Collection 
Process

No Control 
over Data 
Collection 
Process

}

}
• Part 1—Setting up the problem of Individualization

• Example using a chronic disease
• Simple setting: No Treatment Effects
• Bayesian Hierarchical Framework for Individualizing Predictions
• Key ideas: Transfer learning, Multilevel modeling

• Part 2—Estimating Treatment Effects & Individualized Treatment 
Effects
• Example using inpatient data
• Learning from observational data
• Key ideas: Potential Outcomes, Causal Inference for Bias Adjustment, 

BNP  

• Part 3—Causal Predictions 
• Relax assumption from Part 1 about no treatment effects
• Discuss predictions that are robust to changes in physician practice 

behavior

• Part 4—From Predictions to Treatment Rules
• Key ideas: Q-learning, Dynamic Treatment Regimes
• Connections to Reinforcement Learning 



Example: Exercise and Blood Pressure

• Hypothesis: exercise lowers blood pressure

• In this example, we have:

• (a) A treatment (exercise)

• (b) An outcome (blood pressure)

• How can we use data to estimate whether exercise will 
lower blood pressure?



• Grab an existing dataset containing people who did and 
did not exercise and have measurements of blood 
pressure

• Average the change in blood pressure among people 
who exercise and among those who don’t

• Will this work?

Example: Exercise and Blood Pressure



Randomized Controlled Trial (RCT)
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• Dataset generative model:
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Randomized Controlled Trial (RCT)

-4

-2

0

2

-2 0 2
BMI

B
P

Exercise
FALSE

TRUE
0

10

20

30

40

50

0

10

20

30

40

50

FA
LS
E

TR
U
E

-4 -2 0 2
BP

Exercise
FALSE

TRUE

Effect Estimate: -0.79

• Dataset generative model:

• Comparing averages will work!

xBMI yBP

Exerc

xBMI ⇠ N (0, 1)

yBP ⇠ N (xBMI, 0.4)� 0.8 · I[Exercise]

Exerc ⇠ Bern(0.5)

yBP ⇠ N (xBMI, 0.4)� 0.8 · Exerc



Observational Data
• Instead of running an expensive trial, suppose we simply 

collect information on 1000 individuals from general 
clinics around the country

• In the observational data, exercise is assigned by the 
clinicians caring for the individuals

• In particular, we assume that a higher BMI makes 
prescription of exercise more likely:

Exerc ⇠ Bern

✓
1

1 + e�2xBMI

◆

xBMI yBP

Exerc

xBMI ⇠ N (0, 1)

yBP ⇠ N (xBMI, 0.4)� 0.8 · I[Exercise]
yBP ⇠ N (xBMI, 0.4)� 0.8 · Exerc



Observational Data
• Simply comparing averages no longer works!

• What’s going on? How can we adjust for this bias?
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Approach 1: Weighting
• If we know (or can estimate) a model of treatment 

assignment, then a common approach is to use inverse 
probability of treatment weights

• Intuitive idea: when computing averages, count an 
individual more if she was unlikely to receive treatment 
(probability is low —> weight is high) and vice versa
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Horvitz and Thompson, 1952 Robins et al. 2000

http://lib.stat.cmu.edu/~brian/905-2008/papers/Horvitz-Thompson-1952-jasa.pdf
http://www.jstor.org/stable/3703997?seq=1#page_scan_tab_contents


Approach 1: Weighting
• For each individual, compute weight:

• Other approaches: matching, propensity scores 

• Off-policy evaluation: 

wi =
1

p(Ai = ai | Xi = xi)

Must know or estimate  
the treatment 

assignment model

• Compute weighted averages among treated/not treated

ȳ
Exerc

=

Pn
i=1

wi · yi · I[Exerc = 1]Pn
i=1

wi · I[Exerc = 1]

ȳ
No Exerc

=

Pn
i=1

wi · yi · I[Exerc = 0]Pn
i=1

wi · I[Exerc = 0]

Rosenbaum and Rubin, 1983 

Hernán and Robins, Forthcoming Textbook

Dudik et al., 2011 Paduraru et al. 2013Jiang and Li, 2016

Shalit and Sontag Tutorial, ICML 2016

http://biomet.oxfordjournals.org/content/70/1/41.short
https://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/
https://arxiv.org/abs/1103.4601
http://www.cs.mcgill.ca/~jpineau/files/cpaduraru-jmlr2013.pdf
http://jmlr.org/proceedings/papers/v48/jiang16.pdf
http://www.cs.nyu.edu/~shalit/tutorial.html


Alternative Framework: Potential Outcomes
• We will approach this problem using the framework of 

potential outcomes 

• For an individual, conceptualize two “alternate realities”

• (1) They exercise

• (2) They do not exercise

• In each reality, we can measure blood pressure and 
measure the potential outcome

• If we know both potential outcomes, we can answer the 
question of whether exercise lowers blood pressure

Rubin, 1974 Neyman et al., 1990 Rubin, 2005

http://psycnet.apa.org/journals/edu/66/5/688/
http://projecteuclid.org/euclid.ss/1177012031
http://amstat.tandfonline.com/doi/abs/10.1198/016214504000001880


Potential Outcomes
• To formalize, define two distinct random variables:

• Y(a) : blood pressure with exercise

• Y(b) : blood pressure without exercise

• More generally, we can index a set of random variables 
using a set of actions/treatments:

• Offers a way to reason about counterfactuals.

• Goal: learn statistical models to estimate potential outcomes

{Y (a) : a 2 A}



Critical Assumptions
• To learn the potential outcome models, we will use three 

important assumptions:

• (1) Consistency

• Links observed outcomes to potential outcomes

• (2) Treatment Positivity

• Ensures that we can learn potential outcome models

• (3) No unmeasured confounders (NUC)

• Ensures that we do not learn biased models



(1) Consistency
• Consider a dataset containing observed outcomes, 

observed treatments, and covariates:

• E.g.: blood pressure, exercise, BMI

• Consistency allows us to replace the observed response 
with the potential outcome of the observed treatment

• Under consistency our dataset satisfies

{yi, ai,xi}ni=1

Y , Y (a) | A = a

{yi, ai,xi}ni=1 , {yi(ai), ai,xi}ni=1



(2) Positivity
• When working with observational data, for any set of 

covariates     we need to assume a non-zero 
probability of seeing each treatment

• Otherwise, in general, cannot learn a conditional model 
of the potential outcomes given those covariates

• Formally, we assume that

x

PObs(A = a | X = x) > 0 8a 2 A, 8x 2 X



(3) No Unmeasured Confounders (NUC)
• In our exercise example, BMI is a confounder

• It induces a statistical dependency between the 
observed treatment and observed outcome

• In general, unless we observe all confounders, we 
cannot learn unbiased models of potential outcomes from 
observational data

• Formally, NUC is an statistical independence assertion:

Y (a) ? A | X = x : 8a 2 A, 8x 2 X
To explain NUC graphically, we introduce the graphical  
notation of SWIGs.



• SWIGs extend graphical models to explicitly represent 
potential outcomes

• To obtain a SWIG, we define a causal graphical model 
and specify the set of treatment variables

• We apply node-splitting operations to treatment 
variables to represent interventions

Single-World Intervention Graphs

Richardson and Robins, 2014Richardson, 2014 NIPS tutorial:

https://www.csss.washington.edu/Papers/wp128.pdf
https://www.microsoft.com/en-us/research/video/tutorial-non-parametric-causal-models/


• A simple “a” vs “b” example:

Example SWIG

a

Y

Y (a)

Y (b)
b

G

G(a)

G(b)

do “a”

do “b”

Treatment variable
Causal DAG

SWIGs

A

A

A

Richardson and Robins, 2014Richardson, 2014 

• We apply node-splitting operations to treatment 
variables to represent interventions

https://www.csss.washington.edu/Papers/wp128.pdf
https://www.microsoft.com/en-us/research/video/tutorial-non-parametric-causal-models/


Interpreting SWIGs
• Treat SWIGs as standard causal graphs

• Semi-circle nodes are just reminders that we have 
applied a node-splitting operation

• From this graph, can read that Y(a) is independent of the 
observed treatment A

a
Y (a)

G(a)
A

Richardson and Robins, 2014Richardson, 2014 

https://www.csss.washington.edu/Papers/wp128.pdf
https://www.microsoft.com/en-us/research/video/tutorial-non-parametric-causal-models/


• SWIGs make NUC assumption easy to express 

• Confounders X d-separate potential outcomes from 
observed treatment random variable when intervening on 
treatment

NUC in SWIG Language

T

a
Y (a)

G(a) X

T

XG
do “a”

Y

Richardson and Robins, 2014Richardson, 2014 

Y (a) ? A | X = x : 8a 2 A, 8x 2 X

https://www.csss.washington.edu/Papers/wp128.pdf
https://www.microsoft.com/en-us/research/video/tutorial-non-parametric-causal-models/


Using Models to Adjust for Bias

• Assume models of potential outcomes given covariates

• We can use them to adjust for bias in observational data

• Key idea: use models to “simulate” an RCT

{P(Y (a) | X = x) : a 2 A}

Rubin 1977 Robins 1986

http://jeb.sagepub.com/content/2/1/1.short
http://www.sciencedirect.com/science/article/pii/0270025586900886


Using Potential Outcomes Framework to 
Simulate RCT

• Our observational data is drawn from

• We want experimental data drawn from

• If we know potential outcome models:

• Draw from empirical covariate distribution:

• Flip fair coin to assign treatment:

• Simulate outcome from model: 

Q , P(X)PObs(A | x)P(Y | a,x) = P(X)PObs(A | x)P(Y (a) | x)

P , P(X)P
Exp

(A)P(Y | a,x) = P(X)P
Exp

(A)P(Y (a) | x)

X ⇠ {xi}ni=1

A ⇠ Bern(0.5)

P(Y (a) | X = x)



Learning Potential Outcome Models
• To simulate data from a new policy, we need to learn the 

potential outcome models

• If we have an observational dataset where 
assumptions 1-3 hold, then this is possible!

• Assumptions allow estimation of potential outcomes from 
(observational) data:

(A3)
(A1)

P(Y (a) | X = x) = P(Y (a) | X = x, A = a)

= P(Y | X = x, A = a)



• Returning to our exercise and blood pressure example

• We fit a model for blood pressure given exercise and BMI

• With estimated models, treatment effects are estimated 
as: 

Exercise and Blood Pressure
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Going beyond PATE
PATE: Population Average Treatment Effect:

E[Y (1)−Y (0)] =
1

N

N∑

n=1

(Yn(1)−Yn(0))

To account for the heterogeneous treatment effect among patients, it is more of 
interest to look at CATE, the conditional average treatment effect:

E[Y (1)− Y (0) | C1 = c1]

See e.g.: Tian et al., 2014Imai et al., 2013Foster et al., 2011

Athey and Imbens, 2016

http://www.tandfonline.com/doi/abs/10.1080/01621459.2014.951443
http://projecteuclid.org/euclid.aoas/1365527206
http://onlinelibrary.wiley.com/doi/10.1002/sim.4322/full
http://www.pnas.org/content/113/27/7353


Sequential Treatment Assignment and Time-
Varying Confounding

Y1 Y2 Y3

A1 A2

• Interventions and observations are interleaved

• Intervention effects future observations 
Those observations affect future interventions 
And so on…

• When can we disentangle to learn unbiased models of 
potential outcomes?

• Also called time-varying confounding. 

Robins 1986

http://www.sciencedirect.com/science/article/pii/0270025586900886


Sequential Treatment Assignment and Time-
Varying Confounding

Y1 Y2 Y3

A1 A2

• Interventions and observations are interleaved

• Intervention effects future observations 
Those observations affect future interventions 
And so on…

• When can we disentangle to learn unbiased models of 
potential outcomes?

• Also called time-varying confounding. 

• As in single-treatment, single-outcome examples, 
we need assumptions that allow us to link 
conditional distributions to the target potential 
outcome models

Robins 1986

http://www.sciencedirect.com/science/article/pii/0270025586900886


For many disease, response to therapy varies greatly across 
individuals. To personalize therapy, we need to estimate at 
the individual level their likely response to treatment.

Estimating Individualized Treatments Effects From 
Clinical Records
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We wish to obtain uncertainty 
estimate over an individual’s 
treatment response over time. 
And we want to estimate this 
from routinely collected data 

• sparse, irregularly sampled 
clinical time series

Distribution over Individualized Treatment 
Response Curves

• Population averages vs. Individualized Estimates
• Refined as new measurements are collected on the 

individual
• Point-in-time vs. Treatment Response Curve
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• The SWIG is:

SWIG for Sequential Setting

Y1

A1 a1

Y2(a1) Y3(a1:2)

A2(a1)
a2

H

P (Y1 = y1)P (Y2(a1) = y2 | Y1 = y1)P (Y3(a1, a2) = y3 | Y1 = y1, Y2(a1) = y2)

= P (Y1 = y1)P (Y2 = y2 | Y1 = y1, A1 = a1)P (Y3 = y3 | Y1 = y1, Y2 = y2, A1 = a1, A2 = a2)

Robins 1986

• The SWIG shows us that for each outcome, conditioning on 
previous outcomes d-separates from observed treatments

http://www.sciencedirect.com/science/article/pii/0270025586900886


Approach: g-formula
For patient i:
Observations                               measured at times
Treatments                                prescribed at times
A set of covariates

Estimation requires a statistical model for estimating conditionals: 

• Likelihood based approach; use flexible BNP to reduce error 
due to model mis-specification

• Other estimation techniques can be used.

P (Yij |ai,j ,ai,j�1,yi,j�1,Cij)

Xu et al., 2016

Ferguson, 1973 Müller and Rodriguez, 2013Müller and Mitra, 2013

Robins 1986

https://arxiv.org/abs/1608.05182
http://www.jstor.org/stable/2958008?seq=1#page_scan_tab_contents
https://projecteuclid.org/euclid.cbms/1362163742
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3870167/
http://www.sciencedirect.com/science/article/pii/0270025586900886


ITR: Additive Treatment Effects

Parametrization for the treatment 
response curve: 

(a) A simulated trajectory with one treatment  (b) A simulated trajectory with multiple treatments  

Key parameters:
• a1: peak effect
• a2: how quickly the effect reaches the peak
• a3: how quickly the effect diminish
• r: change point
• b: the ratio of the final effect to the peak effect

Xu et al., 2016

https://arxiv.org/abs/1608.05182


Choices to reduce error due to model mis-
specification

Gaussian Process to flexible 
model longitudinal traces

Dirichlet Process mixture prior to cluster 
treatment response and baseline 
progression parameters

- Each individual samples its 
parameters from a cluster mean

- No bias due to assuming that 
clusters are of equal size or a fixed 
number of clusters 

- Posterior Predictive: Estimates 
refined with new data

Xu et al., 2016
Ferguson, 1973

https://arxiv.org/abs/1608.05182
http://www.jstor.org/stable/2958008?seq=1#page_scan_tab_contents


Heterogeneous Treatment Response

Vasopressor:

Beta-blocker:

Fluid_bolus:

M
A

P
M

A
P

M
A

P

VP(+) VP(++) VP(+++)

BB(-) BB(- -)

FL(+)

• Data: EHR collected over two years at Howard County General Hospital from 2013-2015. 300 ICU 
patients who were prescribed at least one of the treatments.

Xu et al., 2016

https://arxiv.org/abs/1608.05182


Overview

Control 
over Data 
Collection 
Process

No Control 
over Data 
Collection 
Process

}

}
• Part 1—Setting up the problem of Individualization

• Example using a chronic disease
• Simple setting: No Treatment Effects
• Bayesian Hierarchical Framework for Individualizing Predictions
• Key ideas: Transfer learning, Multilevel modeling

• Part 2—Estimating Treatment Effects & Individualized Treatment 
Effects
• Example using inpatient data
• Learning from observational data
• Key ideas: Potential Outcomes, Causal Inference for Bias Adjustment, 

BNP  

• Part 3—Causal Predictions 
• Relax assumption from Part 1 about no treatment effects
• Discuss predictions that are robust to changes in physician practice 

behavior

• Part 4—From Predictions to Treatment Rules
• Key ideas: Q-learning, Dynamic Treatment Regimes
• Connections to Reinforcement Learning 



Continuous Monitoring
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Continuous Monitoring

Predictive Model for Forecasting Downstream Adverse Event

Adverse 
Event Onset



Using 
Presence of 

AE as 
annotation

Adverse 
Event Onset

 Use supervised learning for distinguishing patients with AE from those without



Pneumonia Severity Index: Risk of Mortality

• Identify candidate risk factors  

• Learn score and relative weights by regressing against 
observed mortality

Fine et al., N Engl J Med 336 (4): 243–250, 1997

http://www.nejm.org/doi/full/10.1056/NEJM199701233360402#t=article


But, interventions censor the true label.

antibiotic

fluid bolus 
500 ml

fluid bolus 
1200 ml

pressors

Using 
Presence of 

AE as 
annotation

Adverse 
Event Onset

Paxton et al., 2013 Dyagilev et al., 2016

https://dl.dropboxusercontent.com/u/20167181/developing-predictive-models-amia-final.pdf
http://link.springer.com/article/10.1007/s10994-015-5527-7


But, interventions censor the true label.

antibiotic

fluid bolus 
500 ml

fluid bolus 
1200 ml

pressors

Using 
Presence of 

AE as 
annotation

Adverse 
Event Onset

(!) Learnt Risk Estimates are Highly Sensitive to 
Provider Practice Pattern 

Paxton et al., 2013 Dyagilev et al., 2016

https://dl.dropboxusercontent.com/u/20167181/developing-predictive-models-amia-final.pdf
http://link.springer.com/article/10.1007/s10994-015-5527-7


• Simple example (Flu) 
• Measure temperature 
• Measure WBC 

 

• Increase in temperature or WBC increases risk of death 

Challenge: Learnt Risk Estimates 
Sensitive to Provider Practice Pattern

Dyagilev et al., 2016

http://link.springer.com/article/10.1007/s10994-015-5527-7


Key idea: 

• Consider a unit where patients get treated as temperature 
increases above say, 102 degrees 

• Therefore, fewer deaths due to rising temperature 

• As fewer individuals experience death, the algorithm no 
longer associates rise in temperature with risk. 

Challenge: Learnt Risk Estimates Sensitive 
to Provider Practice Pattern

Dyagilev et al., 2016

http://link.springer.com/article/10.1007/s10994-015-5527-7


Bias Due to Interventional Confounds
• Model flu severity; temperature is observed  

• Example: Synthetic-Pneumonia   
• If flu, temperature increases unless medicated 
• When medicated, temperature returns to normal 
• At 108 deg F, subject dies 

• Consider hospitals with different practice patterns:  
P(med | temperature) 

No antibiotics:

With antibiotics:

 



Bias Due to Interventional Confounds
• Model flu severity; temperature is observed  

• Simulate using Synthetic-Pneumonia model: 
• If flu, temperature increases unless medicated 
• When medicated, temperature returns to normal 
• At 108 deg F, subject dies 

• Consider hospitals with different practice patterns:  
P(med | temperature) 

Dyagilev et al., 2016

http://link.springer.com/article/10.1007/s10994-015-5527-7


Bias Due to Interventional Confounds

Learned risk scores are high sensitive to changes  
in provider practice patterns: 
• Resulting risk scores are also less interpretable 
• They violate construct validity [Medsger et al., 2003] 
 

Vary provider practice patterns between train and test:

Increase probability 
of treating for rising 
temperature

Increasing discrepancy in 
physician prescription behavior 
in train vs. test environment

Dyagilev et al., 2016

http://link.springer.com/article/10.1007/s10994-015-5527-7


Alternate forms of training and supervision?

Clinical Comparisons: 

get severity 
annotation directly?

Instead: 

septic shock 
onset

interventions

Regression

Often not practical because 
getting these annotations are 

challenging. 



Alternate forms of training and supervision?

get severity 
annotation directly?

Instead: 

septic shock 
onset

interventions

compare 
severity 

annotations

Today: Joint modeling of states and actions

Comparison Pairs:Regression Dyagilev et al., 2016

Bareinboim and Pearl, 2013Transportability not always possible:

http://link.springer.com/article/10.1007/s10994-015-5527-7
http://ftp.cs.ucla.edu/pub/stat_ser/r443.pdf


Causal Predictions 
• Learnt risk is conditional on prescription patterns.

• Statistical model’s predictions may capture 
correlations that depend on provider practice

• E.g. “treat when temperature rises above 100”

• What we observe is “what happens if they receive the 
treatments they did receive”

• The desired target is: “what is likely to happen to this 
patient given their history if we do not treat vs treat” 
We will refer to this idea as estimating the causal risk.  

Bottou et al., 2012

http://www.jmlr.org/papers/volume14/bottou13a/bottou13a.pdf


• Recall example application from Section 1

• Potential outcomes allow “what if?” reasoning

• To select best treatment for an individual, we can 
examine expected outcomes under each choice
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Personalization and Potential Outcomes



• What is the future trajectory under different sequences of interventions?

Personalization and Potential Outcomes
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Schulam and Saria, 2017

https://arxiv.org/abs/1703.10651


• What if we administer another dose of Drug B?

Personalization and Potential Outcomes
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Schulam and Saria, 2017

https://arxiv.org/abs/1703.10651


• What about another dose of Drug A?

Personalization and Potential Outcomes
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Schulam and Saria, 2017

https://arxiv.org/abs/1703.10651


• What about two sequential doses of Drug A?

Personalization and Potential Outcomes
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Trajectory-Valued Potential Outcomes
• In the single-treatment, single-outcome case we learned 

models of the potential outcomes and used them to 
simulate experimental results

• We want to transplant this idea to the individual level:

• Can we learn personalized trajectory-valued potential 
outcome models?

• If so, can we use those models to simulate 
experiments that investigate the effect of different 
treatment decisions for this person?

Schulam and Saria, 2017

https://arxiv.org/abs/1703.10651


Recall: Sequential Treatment Assignment and 
Time-Varying Confounding

Y1 Y2 Y3

A1 A2

• Interventions and observations are interleaved

• Intervention effects future observations 
Those observations affect future interventions 
And so on…

• When can we disentangle to learn unbiased models of 
potential outcomes?

• Also called time-varying confounding. 

Robins 1986

http://www.sciencedirect.com/science/article/pii/0270025586900886


• Assumptions: (1) Consistency, (2) Sequential Ignorability 
(NUC)

Y1

A1 a1

Y2(a1) Y3(a1:2)

A2(a1)
a2

H

P (Y1 = y1)P (Y2(a1) = y2 | Y1 = y1)P (Y3(a1, a2) = y3 | Y1 = y1, Y2(a1) = y2)

= P (Y1 = y1)P (Y2 = y2 | Y1 = y1, A1 = a1)P (Y3 = y3 | Y1 = y1, Y2 = y2, A1 = a1, A2 = a2)

Recall: SWIG for Sequential Setting

• The SWIG shows us that for each outcome, conditioning on 
previous outcomes d-separates from observed treatments

Robins 1986

http://www.sciencedirect.com/science/article/pii/0270025586900886


Handling Irregularity

hi = [(yi1, ti1), (ai1, ⌧i1), (yi2, ti2), (yi3, ti3)].

• We can handle irregularly sampled observations and 
treatments in a similar way [Part 1 and Part 2]

• We assume measurements are missing at random i.e. 
the choice of when to measure depends on the past 
observed data [Recall from Part 1]

• In an irregular trace (i.e. sequence of interleaved actions 
and observations), there can be multiple observations 
between actions:



Factoring Irregular Traces
• We can still factor these traces as we would regularly 

sampled traces (see paper for details)

• Define:

•      to be the observations prior to action k

•      to be the actions taken prior to action k

•      to be observations after action k, but before k+1

• Then we can factor an arbitrary trace:

ȳk

āk

p(h | x ) = p(y0 | x )
mY

k=1

p(ak, ⌧k | ȳk, āk,x)p(yk | ȳk, ak, ⌧k, āk,x),

yk

Schulam and Saria, 2017

https://arxiv.org/abs/1703.10651


Irregular Traces and Functional Potential Outcomes

• Assuming Consistency and Sequential NUC (see paper for details)

• Therefore can maximize probability of irregular trace:

• Policy is unknown, but assumed to be distinct so we can ignore the treatment 
policy terms when learning functional potential outcome models

p(h | x ) = p(y0 | x )
mY

k=1

p(ak, ⌧k | ȳk, āk,x)p(yk | ȳk, ak, ⌧k, āk,x),

p(yk | ȳk, ak, ⌧k, āk,x) = p(yk(ak, ⌧k) | ȳk, āk,x)

Recall:

Schulam and Saria, 2017

https://arxiv.org/abs/1703.10651


• Many different ways to model conditional distributions 
over markers (green component in last slide)

• One example: Gaussian process

Modeling Irregular Traces

GP( m(·;a,x), k(·, ·) )

Mean function depending on 
covariates and sequence of treatments

Covariance function   
independent of treatments

Schulam and Saria, 2017

https://arxiv.org/abs/1703.10651


• Many different ways to model conditional distributions 
over markers (green component in last slide)

• One example: Gaussian process

Modeling Irregular Traces

• Recall individualization approach from Part 1:

GP( mi(·;a,x), ki(·, ·) )

Schulam and Saria, 2017

https://arxiv.org/abs/1703.10651


• Using previous lung disease progression patterns and 
learning from response to treatment, we can predict how 
individuals will respond to treatment and how they will 
progress when treatment is no longer given

Example: Lung Disease Trajectories
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Predicting trajectories for Targeting Treatments in 
Critically Ill Patients

(a) Example Trajectory of MAP and Treatment Response Curve of Fluid (FL) 

(b) Example Trajectory of MAP and Treatment Response Curves of Vasopressor (VP) and Fluid (FL) 

Pa#ent	ID	116053	

Pa#ent	ID	120794	

VP(++)	FL(+)	FL(+)	 FL(+)	TF(+)	 VP(+)	

FL(+)	 FL(+)	 FL(+)	 BB(-)	BB(-)	FL(+)	

VP(++)	FL(+)	

Xu et al., 2016 Liu et al., 2016

https://arxiv.org/abs/1608.05182
http://www.homepages.ucl.ac.uk/~ucgtrbd/whatif/Paper19.pdf


Caveats in Practice and Discussion
• Estimates of the individual components within the statistical model may not be 

good enough based on available data
• Not enough data to train from.
• Available measurements are not predictive.

• Inferences are correct assuming no model mis-specification. 
• Important aspect of causal modeling is getting your causal assumptions right. 

• Think hard about the problem—> avoids the chance of model mis-
specification or making incorrect assumptions.

• Semi-parametric or flexible nonparametric strategies are helpful here.
• Methods to check sensitivity to assumption (e.g., posterior predictive checks)

• Driving modeling decisions based on practical utility
• Decisions are made with a human in the loop.

• Transparency does not have to be interpreted as the use of a linear model 
or a decision tree. 

• Estimating intermediate quantities that are interpretable or can serve as 
validation can be useful (e.g., subpopulation, individual-specific deviations) 

• Need ways to monitor performance over time.



Overview

Control 
over Data 
Collection 
Process

No Control 
over Data 
Collection 
Process

}

}
• Part 1—Setting up the problem of Individualization

• Example using a chronic disease
• Simple setting: No Treatment Effects
• Bayesian Hierarchical Framework for Individualizing Predictions
• Key ideas: Transfer learning, Multilevel modeling

• Part 2—Estimating Treatment Effects & Individualized Treatment 
Effects
• Example using inpatient data
• Learning from observational data
• Key ideas: Potential Outcomes, Causal Inference for Bias Adjustment, 

BNP  

• Part 3—Causal Predictions 
• Relax assumption from Part 1 about no treatment effects
• Discuss predictions that are robust to changes in physician practice 

behavior

• Part 4—From Predictions to Treatment Rules
• Key ideas: Q-learning, Dynamic Treatment Regimes
• Connections to Reinforcement Learning 



• A mapping of states to actions
• In reinforcement learning, this is called a sequential 

policy  
• In treatment planning, sequential policies called 

dynamic treatment regime
• States are functions of an individual’s clinical history, 

and the policy maps these histories to actions.

Sequential Decision Making

Y1 Y2 Y3

A1 A2

Times at which 
decisions are made

The nodes that an 
action node is 
dependent on 
provides the context 
upon which the 
decision depends



• A mapping of states (context) to actions
• In reinforcement learning, this is called a sequential policy  
• In statistics, it is called a dynamic treatment regime

• To obtain such a policy, 
• we can use model based or model-free methods
• we use learn by either interacting with the world or learn 

from offline data.

• Loosely speaking, 
• model-based learns a dynamical model of the system 

(e.g., an MDP)—> as a by-product, also make predictions
• for model-free methods, you evaluate the policy directly 

using traces

Sequential Treatments

Paduraru et al., 2013Review:

http://www.cs.mcgill.ca/~jpineau/files/cpaduraru-jmlr2013.pdf


• Basic Q-learning algorithm

Learning by Interacting with the World

Watkins 1989

Q-function or the action-value function

Initialize Q-functions and update as you explore.

https://www.cs.rhul.ac.uk/home/chrisw/thesis.html


• Basic Q-learning algorithm
Learning by Interacting with the World

Ghavamzadeh et al., 2015
Review:

Watkins 1989

http://www.nowpublishers.com/article/Details/MAL-049
https://www.cs.rhul.ac.uk/home/chrisw/thesis.html


Safe Reinforcement Learning
• Two broad approaches to safe RL

• Modifying optimization criterion (notion of reward)

• Penalize movement through “error states” 

• Modifying exploration strategies

• Incorporate domain knowledge

• Apprenticeship: seed MDP parameters using a 
teachers demonstration 

Garciá and Fernández, 2015

Abbeel and Ng, 2005

Geibel and Wysotzki, 2005

Martín and Lope, 2009

http://www.jmlr.org/papers/volume16/garcia15a/garcia15a.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2005_AbbeelN05.pdf
http://www.aaai.org/Papers/JAIR/Vol24/JAIR-2403.pdf
http://link.springer.com/chapter/10.1007/978-3-642-04772-5_11


Dynamic Treatment Regimes: Learning  
from Offline Data

A1 = T1

A1 = T2

A2 = T1

A2 = T2

A2 = T1

A2 = T2

Y1

P (Y3(A1 = T1, A2 = T2)|Y1)

P (Y3(A1 = T2, A2 = T1)|Y1)

Optimal  
decision at 

time 1
argmaxA1

maxA2f(P (Y3(A1, A2)|Y1))

Robins 2004; Blatt et al., 2004; Rothøj et al. 2006;  
Henderson et al. 2010; Almirall et al. 2010

Dudik et al., 2011

Jiang and Li, 2016

Murphy 2003

Rothøj et al., 2006

Robins 2004 Blatt et al., 2004
Henderson et al., 2010 Almirall et al., 2010

https://arxiv.org/abs/1103.4601
http://jmlr.org/proceedings/papers/v48/jiang16.pdf
http://onlinelibrary.wiley.com/doi/10.1111/1467-9868.00389/abstract
http://onlinelibrary.wiley.com/doi/10.1002/sim.2694/full
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.67.8997&rep=rep1&type=pdf
http://dept.stat.lsa.umich.edu/~samurphy/papers/Alearning2004.pdf
http://onlinelibrary.wiley.com/doi/10.1111/j.1541-0420.2009.01368.x/full
http://onlinelibrary.wiley.com/doi/10.1111/j.1541-0420.2009.01238.x/full


Dynamic Treatment Regimes: Learning  
from Offline Data

A1 = T1

A1 = T2

A2 = T1

A2 = T2

A2 = T1

A2 = T2

Y1

P (Y3(A1 = T1, A2 = T2)|Y1)

P (Y3(A1 = T2, A2 = T1)|Y1)

Optimal  
decision at 

time 1
argmaxA1

maxA2f(P (Y3(A1, A2)|Y1))

When tree-size is large, use 
dynamic programming. 

Murphy 2003
Dudik et al., 2011

Jiang and Li, 2016 Rothøj et al., 2006

Robins 2004 Blatt et al., 2004
Henderson et al., 2010 Almirall et al., 2010

http://onlinelibrary.wiley.com/doi/10.1111/1467-9868.00389/abstract
https://arxiv.org/abs/1103.4601
http://jmlr.org/proceedings/papers/v48/jiang16.pdf
http://onlinelibrary.wiley.com/doi/10.1002/sim.2694/full
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.67.8997&rep=rep1&type=pdf
http://dept.stat.lsa.umich.edu/~samurphy/papers/Alearning2004.pdf
http://onlinelibrary.wiley.com/doi/10.1111/j.1541-0420.2009.01368.x/full
http://onlinelibrary.wiley.com/doi/10.1111/j.1541-0420.2009.01238.x/full


Slide from Inbal (Billie) Nahum-Shani, Nick Seewald, Susan Murphy 

ExTENd(PI: Oslin): Treatment of Alcohol Dependence

Sequential Multiple Assignment, Randomized Trial 
(SMART)

• Trials for evaluating sequential 
treatment strategies.

• Assignment is adaptive



Conclusion & Discussion
• Need for individualization based on diverse data. 

• Our practice of medicine will change radically in at least some areas in the next 
decade and there is an exciting opportunity for us to make a difference.

• Bayesian Hierarchical Framework for Individualizing Predictions
• Motivated latent sources of variability that can be inferred to refine predictions
• Discussed the problem of inferring disease trajectories

• Estimating Treatment Effects & Individualized Treatment Effects
• Learning from observational data
• Key ideas: Potential Outcomes, Causal Inference for Bias Adjustment, BNP  

• Causal Predictions 
• Relax assumption from Part 1 about no treatment effects
• Discuss predictions that are robust to changes in physician practice behavior

• From Predictions to Treatment Rules
• Connections to Reinforcement Learning, Dynamic Treatment Regimes, 

SMART



Publicly available datasets
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ssaria@cs.jhu.edu 

www.suchisaria.com
@suchisaria
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