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Introduction

A $3 Trillion Challenge
to Computational
Scientists: Transforming

Healthcare Delivery

Suchi Saria, Johns Hopkins University

ealthcare spending in the US is nearing $3 tril-
lion per year, but in spite of this expenditure,
the US is outpaced by most developed countries in
terms of health and quality of life outcomes—for

example, it ranks 36th internationally in life ex-
pectancy.! The share of health spending in its
gross domestic product has increased sharply, from
5 percent of GDP in 1960 to more than 17 percent
today,? a rate of increase that’s widely believed to
be unsustainable.?

Policy and regulatory reform have important
roles to play in addressing these challenges. Yet one
of the largest underexplored avenues is the better
use of information derived from the vast amount of
health data now being collected in digital format.*

I haliave that ane af the mact cionitficant anen fran-

paper records that weren’t amenable to retrospec-
tive, automated analyses. The Health Information
Technology for Economic and Clinical Health (HI-
TECH) Act, a program that was part of the Amer-
ican Recovery and Reinvestment Act of 2009,
incentivized the adoption of Electronic Health Re-
cords (EHRs) to encourage the shift from paper to
digital records. That program has made more than
$15.5 billion available to hospitals and healthcare
professionals conditioned on their meeting certain
EHR benchmarks for so-called “meaningful use.”
It’s one of the largest investments in healthcare in-
frastructure ever made by the federal government.
A survey by the American Hospital Association
showed that adoption of EHRs has doubled from
2009 to 2011. Tog :

data_demaoraniWETER IEEE Intelllgent Systems, 2014


http://www.cs.jhu.edu/~ssaria/SariaIEEEIS2014_TransformingHealthcareDelivery.pdf

Electronic Health Records

b
,.€-§ Sensors
& Devices

B

Heart Rate

Genomic

Administrative
r Claims ;

=]

SRk
3 - b > A - et
s | ! ol K S— A r e
° s W haas:] s
£
g |
H |
= ul )
©
S
i 1 1 | 1 1 1 1
0 1 2 3 4 5 ] 7 8
Experimentsl Trve
]
D) 4050515-8coACCOUNT #
ccoccn «cnADMITTING SERVICE T T T T T T T
[CARDIOYASCULAR MEDICINE <coDATE OF ADMISSION ;004 TE OF 0k
DISCHARGE: (02/01/2008¢cnyDATE OF BRTH. ()T TENDING
[PHYSIAN. Chlond Chin, M.D.<coCARDIAC SURGEON ATTENDING:  Dlaf Reinhardtz.
M.D.cco<en <o <coADMISSION DIAGNOSIS: False to thave and congestive heart o
fabre ccn ccoPRINCIPAL DIAGNOSIS: Large panmerbianous venincula septal defect. smal

ahiak oo veptal delect and palent duchus atenasus <co<co SECONDARY DIAGNOSES <co
Gastroescphageal eflx dsease «cn2. Tasomy 21.ccn3. Mild lagrgomalacia ccod. Fomes 3557

Systolic Blood Frassurs

week lemale (00 Asynmetic cossbeal underdevslopment by MA! wih stable old 40
vage «coB. History of hypedbi 12 weeks and d ¢coT.
[Opisthatoric posuring wih nom EEG. e Anemia with hematoent of 26 on 01/21/2008,last I
2
negaiwe on (11/08/2008 (1) 11, Persisient cygen requrement 0 b C 3 4 S 6 4 8

[postopesaivel <cr> 12 History of hiee epsodes of presumed aspraion preumonia, kel secondary
loccofeeding (e 13 Hetory of coag negaive Staphylococcus bacteremia, veated wih
chyboaras and pleurd effusion now reschved (oo <coPRINCIPAL
S5:¢en1. Ventieula septal defect paich closwe, sl septd
delect subure cliswecnand patent ducts artesoous fgaten on 11/22/202 ¢en 2 Postoperatve
candac studes, nchading echoc

Exgerimental Tire

4
x10
\ 7~ ° ; L)
o -
\ % :
4 0 2 4




Focus of this talk is on Precision and Personalized
Medicine

Intended audience: Machine learners
Relevant to anyone with interest in personalization
Domains: education, recommender systems, retail



Classical view — Randomized Trials, Clinical Practice

Guidelines and Population models

o QOO @ @
Treatment:; * * * * *

b

- Based on a coarse set of characteristics, define a

population P.
« Conduct trials to determine Intervention A vs B.

- Define guideline to assign intervention to P.

Often referred to as population models. Does not
adequately account for individual-specific variability.




Classical view — Randomized Trials, Clinical Practice

Guidelines and Population models

Example: managing high blood pressure in adults

 “Recommendation 8”:
» In population =18 with chronic kidney disease (CKD)
» Initial anti-hypertensive treatment should include:
- (1) ACEl or (2) ARB

- Use for all CKD patients regardless of race or diabetes status

(1) Indications are coarse.
(2) Not relevant to many in the population — people with
multiple diseases or allergies.



http://jamanetwork.com/journals/jama/fullarticle/1791497?sa=u&ei=g4aeu5f4hquy7abjridobw&ved=0cd0qfjag&usg=afqjcnfsgenxjan3fhzbo_3urte6-tjw7q

Scleroderma - an example

Lung

Skin
Kidney

Treatments

e Systemic autoimmune disease
Main symptom: skin fibrosis
Affects many visceral organs—I|ungs, heart, Gl
tract, kidney, vasculature, and muscles

Affects 300K individuals; 80 other autoimmune diseases — lupus, multiple sclerosis,
diabetes, Crohn’'s — many of which are systemic & highly multiphenotypic.



Targeted Treatment Plans
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 Will this individual continue to decline?
* Should we administer immunosuppressants,
which can be toxic”
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he need for “precision”/"personalization”

@0

Sskin @ o o @

® 0 -
*
Sources of variation:

* The profile of symptoms over time can vary
 Response to treatments can vary

®

¢ Individual organs
‘ affected to varying
?

Kidney extents (size) in a

variety of ways (color).

(1) Characterize diseases more precisely? |s diabetes one disease
or many diseases”?

(2) Moving away from coarse rules to algorithms for generating
targeted treatment plans.




Problem Setting

Sequential Data: No Control over Data Collection Process
+ (1) Off-line learning:
- Learn from data about other individuals to generalize
to a given individual

+ (2) Online learning:
- Learn as we collect new data about a given individual
from repeated measurements

Learning with Control over Data Collection
* (3) Reinforcement Learning:
- Explore to improve model learning
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- Focus of this talk is on Precision and Personalized Medicine

- Intended audience:
- Machine Learners
- Relevant to anyone with interest in personalization

- Key takeaways:
- Provide computational strategies for personalization
- Describe example data
- Introduce concrete applications
- Give intuition into why approach it one way vs another

- Throughout make connections to literature in sub-areas of
machine learning, reinforcement learning, causal inference,
and informatics



- Part 1—Setting up the problem of Individualization

Overview

- Example using a chronic disease

- Simple setting: No Treatment Effects

- Bayesian Hierarchical Framework for Individualizing Predictions
- Key ideas: Transfer learning, Multilevel modeling

- Part 2—Estimating Treatment Effects & Individualized Treatment

Effects
- Example using inpatient data

- Learning from observational data No Control
. . . . over Data
- Key ideas: Potential Outcomes, Causal Inference for Bias Adjustment, Collection
BNP Process
- Part 3—Causal Predictions
- Relax assumption from Part 1 about no treatment effects
- Discuss predictions that are robust to changes in physician practice
behavior
Control
- Part 4—From Predictions to Treatment Rules
. . . . over Data
- Key ideas: Q-learning, Dynamic Treatment Regimes Collection

-+ Connections to Reinforcement Learning Process



Overview

¢+ Part 1—Setting up the problem of Individualization

- Example using a chronic disease

- Simple setting: No Treatment Effects

- Bayesian Hierarchical Framework for Individualizing Predictions
- Key ideas: Transfer learning, Multilevel modeling

- Part 2—Estimating Treatment Effects & Individualized Treatment
Effects

- Example using inpatient data

- Learning from observational data No Control
. . . . over Data
- Key ideas: Potential Outcomes, Causal Inference for Bias Adjustment, Collection
BNP Process
- Part 3—Causal Predictions
- Relax assumption from Part 1 about no treatment effects
- Discuss predictions that are robust to changes in physician practice
behavior
Control
- Part 4—From Predictions to Treatment Rules
. . . . over Data
- Key ideas: Q-learning, Dynamic Treatment Regimes Collection

-+ Connections to Reinforcement Learning Process



Individualization and why do we need it?

Develop a predictive model by using regression on
the observed risk factors

y = f (age, gender, baseline test values)

120 -

([
100 -
° %
[ J ° .
- ) ’0 *

E>|_) 80 ."--" ‘
”A I
< :
5yrs :
< - »E
40 - | | 10yrS ; :
0 5 10 15

Years Since First Symptom



Poputatienr Precision medicine

Develop a predictive model by using regression on
the observed risk factors

y = f (age, gender, baseline test values, ....)

Expand the set of covariates to include high-
dimensional molecular measurements
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http://www.nejm.org/doi/full/10.1056/nejmp1500523#t=article
http://link.springer.com/article/10.1007/s00439-012-1188-9
http://www.nature.com/nm/journal/v8/n1/abs/nm0102-68.html

Poputatienr Precision medicine

Develop a predictive model by using regression on
the observed risk factors

y = f (age, gender, baseline test values, ....)

Expand the set of covariates to include high-
dimensional molecular measurements
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http://www.nejm.org/doi/full/10.1056/nejmp1500523#t=article
http://link.springer.com/article/10.1007/s00439-012-1188-9
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Data & Problem Motivation

- Functional markers collected to track organ health
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Data & Problem Motivation

- Functional markers collected to track organ health
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Predicting Disease Trajectories
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Function valued-regression
y =f (age, gender, baseline test values, [¢1(2),...,¢a(t)])

e

Expand the set of covariates to include non-
linear functions of time




Predicting Disease Trajectories
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Function valued-regression
y = f (age, gender, baseline test values, ....)

BUT
this assumes that sources of heterogeneity across
individuals entirely explained away by observed factors.

Many factors leading to differences in trajectory may be
unobserved (e.g., difference in genetic mutations, athleticism,
lifestyle)

- Account for heterogeneity in disease course due to both

observed and latent factors



http://pschulam.com/papers/schulam+saria_nips_2015.pdf

Transfer information from others to refine estimates for a

given individual.

B

el |

- #1 Specify Latent Variable Models to make inferences about
latent (individual-specific) sources of heterogeneity

- #2 Learn the transfer hierarchy — i.e. whom to transfer
from and what to transfer?

- #3 Bayesian formulation to prevent overfitting and learn
as new data are collected on the individual



Background: Gaussian Processes
A Gaussian process (GP) is a collection of random variables,

any finite number of which have a joint Gaussian distribution.

output, f(x)

5
input, x

LIX X, F ~ N(K(X, X)K (X, X)™'F,
K(X,,X,) —K(X*,X)K(X,X)_IK(X,X*))


http://www.gaussianprocess.org/gpml/
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Disease Subtypes and Latent Mechanism

Driving Subtypes

Limited cutaneous SSc Diffuse cutaneous SSc TIME

Usual Timing of Problems in Patients with SSc

; DIFFUSE
“renal crisis CUTANEOUS VARIANT

myocardial involvement \

skeletal myopathy

interstitial lung
disease

LIMITED

CUTANEOUS VARIANT
joint contractures

SKIN THICKNESS

malabsorption
esophageal disease

Raynaud's, digital isch pulmonary hypertension

J. Varga, C.P. Denton, and F.M. Wigley. Scleroderma: From Pathogenesis to Comprehensive Management.
Springer Science & Business Media, 2012.

http://www.hopkinsarthritis.org/wp-content/uploads/2011/04/image-11.jpg
http://www.slideshare.net/maushard/skin-manifestations-of-scleroderma-by-dr-lorinda-chung-md

Subtyping research in other diseases:

Autism: HEICELEEER LN LI PR LIRS X F 1M LI EY Parkinson’s: 1 XS0 A L1113
Cardiovascular disease: PELGUELFEIELE RN TIALIIIY  Asthma: PG S et L 0]


http://www.hopkinsarthritis.org/wp-content/uploads/2011/04/image-11.jpg
http://www.slideshare.net/maushard/skin-manifestations-of-scleroderma-by-dr-lorinda-chung-md
http://science.sciencemag.org/content/337/6100/1301
http://finale.seas.harvard.edu/files/finale/files/cormobidity_cluster.pdf
http://circ.ahajournals.org/content/119/24/3044.short
http://jnnp.bmj.com/content/76/3/343.short
http://www.sciencedirect.com/science/article/pii/S014067360861452X

Latent Subpopulation Structure

Subtype 1 Subtype 2
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Two different subpopulations:
Subtype 1: Decliners who stabilize

Subtype 2: Those who improve over time

Can we learn or make inferences about this systematic
deviation as we observe more data about this individual?



Latent Individual-specific Structure

Subtype 1 Subtype 2

376 1013 771 1159
°

90 - L
80 -

70 -

Subpopulation”

70 -

adAigng

60- e

°
60 - A 50 -

Individuals
vary within
subgroups

- Can we learn or make inferences about this systematic
deviation as we observe more data about this individual?



Bayesian Formulation for Disease Trajectories
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http://www.springer.com/la/book/9780387400808

Accounting for Latent Sources of Heterogeneity
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Accounting for Latent Sources of Heterogeneity
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Accounting for Latent Sources of Heterogeneity
Subtype 1 Subtype 2
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http://pschulam.com/papers/schulam+saria_nips_2015.pdf

Accounting for Latent Sources of Heterogeneity
Subtype 1 Subtype 2
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http://pschulam.com/papers/schulam+saria_nips_2015.pdf
https://papers.nips.cc/paper/2540-gaussian-process-latent-variable-models-for-visualisation-of-high-dimensional-data.pdf

Sharing occurs at multiple resolutions

- Use hierarchical Bayes to allow transfer at multiple resolutions.
Parameters use different subsets of the data:

Population trajectory: data from all individuals
- Subtype mean trajectories: data from subgroups of similar individuals
individual adjustments: repeated measurements on the given individual

- Transient adjustments: trends over short periods of time

Yij|Zip, zis bi ~ N | @p(tis) "A Tip+ @2(ti;) " By + Poltiy) "bi + fi(tiz) ,0°
(A) population (B) subpopulation (C) individual (D) structured noise



Posterior Predictive Distribution and

Dynamic Personalization
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History-dependent
Individual Short-Term
Prediction

Population Prediction History-dependent History-dependent

Subpopulation Prediction Individual Long-Term
Prediction

- Use the posterior predictive for online predictions as
new data are collected.

- Mean of posterior predictive has an intuitive form:
replace unobserved individual-specific parameters
with their expectations given the clinical history.



Qualitative Analysis
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http://pschulam.com/papers/schulam+saria_nips_2015.pdf

Missing Data

- We observe the trajectory at a finite number of times

- Do we need to worry about bias due to when the
measurements were made?

- When we want to model a trajectory there is always
going to be missing data

- Is there bias due to when the data are missing?

- When can we use likelihood-based learning?

Little and Rubin, 2014


http://onlinelibrary.wiley.com/book/10.1002/9781119013563

Missing Data Model

Consider the three-observation example

Unobserved trajectory

Y 4
4
Random observation ‘ -
time .

Noisy observation of
trajectory attime T

1
|
I

().
\

(=)

¥

Schulam, Saria, 2016



http://pschulam.com/papers/schulam+saria_jmlr_2016.pdf

Missing Data Model

- For an arbitrary number of observations, the probability
of the observed data can be factored

_ / p(F = DT | 6y i)p(Yi |t fdf

— HP(TZ' £, 5,) /p(F = f)Hp(Y’L [ t, f)df

L1=1 1 L '
Sampling\ I Trajectory
Model Model

Times of
measurements are
independent of the
- Allows fitting of likelihood latent trajectory

without modeling measurement times ,
Schulam, Saria, 2016



http://pschulam.com/papers/schulam+saria_jmlr_2016.pdf

Missing Data Assumptions

- Note: this is Missing at Random (MAR)

- The choice of when to measure is based on observed data only.

- Common to decide when to measure based on past observed data
- For example:

- If there are no recent tests, then clinician is more likely to order a new
test.

- If the past few tests suggest results getting worse, clinician may
iIncrease frequency of measurement.

- More explicitly, we made the following assumption

-+ The times at which the trajectory is observed depend on (a) observed
baseline covariates, and (b) the previous measurement times and
values of observed time-dependent variables


http://onlinelibrary.wiley.com/book/10.1002/9781119013563

Missing Not at Random (MNAR)

-+ These assumptions do not always hold

- When the observation times depend on unobserved
variables, the missing data is Missing Not at Random

Little and Rubin, 2014

+ For example:

- If individuals schedule their own visits, they may only
have measurements when they feel sick

- If observation times are determined by other time-
dependent variables (e.g. other lab tests) that are not

In the data


http://onlinelibrary.wiley.com/book/10.1002/9781119013563

General Ideas vs. Domain Specific

Yij|Zip, ziy bi ~ N | p(tis) "A Zip+ @2(ti5) " Bzy + Poltiy) " bi + fi(tij) 0
\ (A) population (B) subpopulation (C) individual (D) structured noise

What to take away to new problems?
#1 Latent Variable model to account for latent sources of heterogeneity

#2 Posterior Predictive distribution to prevent overfitting and learn as new
data are collected on the individual

#3 Transfer at multiple resolutions

Choice of hierarchy potentially introduces bias. Generates intermediate
guantities that are interpretable by clinicians.

Two useful by-products: (1) Couple models, (2) Subtyping

Which modeling decisions were specific to this app?

#1 No treatment effects

#2 Choice of basis for the trajectories and noise models should reflect
properties of the disease data.



Another example: Chronic Kidney Disease

Prediction

Use clinical markers measured over time (eGFR) to
dynamically predict the probability of stroke

Predicted eGFR Trajectory and Event Probabilities for a Held-out Patient

eGFR
=

eGFR
=

eGFR
=

1 i 1
=5 0 5 10
Time {t=0 is first eGFR=60)

Futoma et al. 2016



https://pdfs.semanticscholar.org/9d2b/6f5a9ea2ee320d5fe9b4d241478d2e2e3727.pdf

Extending to Multivariate Trajectory Data

Motivation:

Lung subtypes likely related to skin
subtype.

In systemic diseases, many
clinical markers are measured to
monitor different organ systems

Challenges:

Measurement times are not
aligned

Some measurements may never
be made on an individual

Rate of measurement varies
across individuals
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Need joint models that can flexibly encode complex
dependencies across markers

Classic assumption of Naive Bayes structure is
incorrect. In general, hard to specify generative model.



Coupled Latent
Variable Models

Conditional
random field (CRF)
to model pairwise
dependencies

Model target
marker conditioned
on auxiliary
markers.

z;=1

Schulam, Saria, 2016
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http://pschulam.com/papers/schulam+saria_jmlr_2016.pdf

Discussion

Schulam, Saria, 2016
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Allows what-if reasoning.

Ways to incorporate domain knowledge into individual
marker-level sub-models.

Plug-in / replace better models as they become available.
Open question: Calibrated posteriors for specific clinical tasks



http://pschulam.com/papers/schulam+saria_jmlr_2016.pdf

Subtypes and Precision Medicine
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5Yealrs1()Since1i3i1rst Symptom
Eg: Subtypes based on
disease trajectories

Other e.g. of sub-grouping patients:

Doshi-Velez et al., 2014 | Yuen et al., 2002 g@ Wang et al.,

Desired: Identify subgroups with
distinct underlying biological
mechanism driving disease.

Current Approach: Identify
candidate subtypes via clustering and
associate with molecular
determinants. See brief introductory

review: Saria, Goldenberg 2015

Open question: How do we increase
the efficiency of subtype discovery
experiments?

Combine high-dimensional
multivariate data to identify
subtypes?

Current approaches (e.g., k-
means with a pre-specified
distance metric).

Learning metrics:


http://pschulam.com/papers/schulam+wigley+saria_aaai_2015.pdf
http://www.sunlab.org/files/8414/3896/4657/rubik_kdd2015_camera_ready.pdf
http://cancerres.aacrjournals.org/content/62/22/6451.short
http://dl.acm.org/citation.cfm?id=2408740
https://www.eecis.udel.edu/~shatkay/Course/papers/SubtypingSariaGoldberg2015.pdf
http://finale.seas.harvard.edu/files/finale/files/cormobidity_cluster.pdf

Related Ideas

Functional Data Analysis

+ Modeling Disease Trajectories

Ross and Dy, 2013 j@ Wang et al., 2014 gl Ghassemi et al. 2014

-+ Dynamical Prediction:

- Personalization

Adomavicius and Tuzhilin 2010
Multi-resolution/hierarchical models

Multivariate time-to-event

Rizopoulous and Ghosh, 201 | @ Andrinopoulou et al. 2014 | Futoma et al. 2016


http://onlinelibrary.wiley.com/doi/10.1111/j.1541-0420.2010.01546.x/full
http://smm.sagepub.com/content/23/1/74.short
http://www.tandfonline.com/doi/abs/10.1198/016214507000000400
http://biostatistics.oxfordjournals.org/content/early/2015/08/28/biostatistics.kxv031.short
http://link.springer.com/article/10.1007/s11257-007-9042-9
http://link.springer.com/chapter/10.1007/978-0-387-85820-3_7
http://link.springer.com/article/10.1007/s11257-011-9112-x
http://www.stat.columbia.edu/~gelman/arm/
http://dl.acm.org/citation.cfm?id=1390267
http://onlinelibrary.wiley.com/doi/10.1002/sim.4205/full
http://onlinelibrary.wiley.com/doi/10.1002/sim.6158/abstract
http://cs.nyu.edu/~dsontag/papers/WanSonWan_kdd14.pdf
http://www.ece.neu.edu/fac-ece/jdy/papers/ross-dy-ICML2013.pdf
http://www.springer.com/la/book/9780387400808
http://www.jmlr.org/proceedings/papers/v37/bahadori15.pdf
https://arxiv.org/abs/1608.04615
http://people.cs.pitt.edu/~milos/research/AAAI_2016_Residual_MTS.pdf
http://mghassem.mit.edu/wp-content/uploads/2013/02/ghassemi_naumann_kdd2014.pdf
http://jmlr.org/proceedings/papers/v48/yoon16.pdf
http://finale.seas.harvard.edu/files/finale/files/cross-corpora_unsupervised_learning_of_trajectories_in_autism_spectrum_disorderes.pdf
http://papers.nips.cc/paper/6177-disease-trajectory-maps.pdf
https://arxiv.org/abs/1504.06964

- Part 1—Setting up the problem of Individualization

Overview

- Example using a chronic disease

- Simple setting: No Treatment Effects

- Bayesian Hierarchical Framework for Individualizing Predictions
- Key ideas: Transfer learning, Multilevel modeling

- Part 2—Estimating Treatment Effects & Individualized Treatment

Effects
- Example using inpatient data
- Learning from observational data

- Key ideas: Potential Outcomes, Causal Inference for Bias Adjustment,
BNP

No Control
over Data
Collection

- Part 3—Causal Predictions

- Relax assumption from Part 1 about no treatment effects

- Discuss predictions that are robust to changes in physician practice
behavior

Control
- Part 4—From Predictions to Treatment Rules
- Kevy id : Q-learning, Dynamic Treatment Regim over Data
ey ideas: Q-learning, Dyna eatme egimes Collection

-+ Connections to Reinforcement Learning Process



Example: Exercise and Blood Pressure

+ Hypothesis: exercise lowers blood pressure
- |In this example, we have:

- (a) A treatment (exercise)

- (b) An outcome (blood pressure)

- How can we use data to estimate whether exercise will
lower blood pressure?



Example: Exercise and Blood Pressure

- @Grab an existing dataset containing people who did and
did not exercise and have measurements of blood
pressure

- Average the change in blood pressure among people
who exercise and among those who don't

- Will this work?



Randomized Controlled Trial (RCT)

- Dataset generative model:

@ Exerc ~ Bern(0.5)
rpmr ~ N (0, 1) @ @ yep ~ N (zpwm1, 0.4) 0.8 - Exerc)

Exercise
© FALSE

¢ TRUE




Randomized Controlled Trial (RCT)

- Dataset generative model:

@ Exerc ~ Bern(0.5)
rem1 ~ N(0,1) @ @ yep ~ N (zpwm1, 0.4) 0.8 - Exerc)

- Comparing averages will work!

- Effect Estimate: -0.79

3S7v4

Exercise

aNdLl




Observational Data

+ Instead of running an expensive trial, suppose we simply
collect information on 1000 individuals from general
clinics around the country

- In the observational data, exercise is assigned by the
clinicians caring for the individuals

In particular, we assume that a higher BMI makes
prescription of exercise more likely:

1
Exerc ~ Bern ( >
1 4+ e~ 2zBMI

rem1 ~ N(0,1) @.@ ygp ~ N (xBMmr1,0.4) — 0.8 - Exerc



Observational Data

-+ Simply comparing averages no longer works!

- What’s going on? How can we adjust for this bias?

. Effect Estimate: 0.29

3s7v4

aNdl

Exercise



Approach 1: Weighting

If we know (or can estimate) a model of treatment
assignment, then a common approach is to use inverse
probability of treatment weights

Intuitive idea: when computing averages, count an
individual more if she was unlikely to receive treatment
(probability is low —> weight is high) and vice versa

Weighted Effect Estimate: -0.90

Effect Estimate: 0.29
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Horvitz and Thompson, 1952 @l Robins et al. 2000



http://lib.stat.cmu.edu/~brian/905-2008/papers/Horvitz-Thompson-1952-jasa.pdf
http://www.jstor.org/stable/3703997?seq=1#page_scan_tab_contents

Approach 1: Weighting

For each individual, compute weight:

Must know or estimate
W — 1 / the treatment
! p(Ai = \ X,; = Xi) assignment model

Compute weighted averages among treated/not treated

> o w; - y; - [[Exerc = 1] S o w; -y, - I[Exerc = 0]

YExerc — Z’I.l_l w; - H[EXGTC _ 1] YNo Exerc = Z?.?’_l wy - H[EXGI’C — O]

Other approaches: matching, propensity scores

Rosenbaum and Rubin, 1983 @ Shalit and Sontag Tutorial, ICML 2016

Hernan and Robins, Forthcoming Textbook

Off-policy evaluation:

Dudik et al., 2011  Jiang and Li, 2016 | Paduraru et al. 2013


http://biomet.oxfordjournals.org/content/70/1/41.short
https://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/
https://arxiv.org/abs/1103.4601
http://www.cs.mcgill.ca/~jpineau/files/cpaduraru-jmlr2013.pdf
http://jmlr.org/proceedings/papers/v48/jiang16.pdf
http://www.cs.nyu.edu/~shalit/tutorial.html

Alternative Framework: Potential Outcomes

- We will approach this problem using the framework of
potential outcomes

Rubin, 1974 g Neyman et al., 1990 § Rubin, 2005

-+ For an individual, conceptualize two “alternate realities”
+ (1) They exercise
+ (2) They do not exercise

- In each reality, we can measure blood pressure and
measure the potential outcome

- If we know both potential outcomes, we can answer the
question of whether exercise lowers blood pressure


http://psycnet.apa.org/journals/edu/66/5/688/
http://projecteuclid.org/euclid.ss/1177012031
http://amstat.tandfonline.com/doi/abs/10.1198/016214504000001880

Potential Outcomes

- To formalize, define two distinct random variables:

+ Y(a) : blood pressure with exercise
+ Y(b) : blood pressure without exercise

-+ More generally, we can index a set of random variables
using a set of actions/treatments:

{Y(a):ae A}
- Offers a way to reason about counterfactuals.

- Goal: learn statistical models to estimate potential outcomes



Critical Assumptions

+ To learn the potential outcome models, we will use three
important assumptions:

+ (1) Consistency

- Links observed outcomes to potential outcomes
+ (2) Treatment Positivity

-+ Ensures that we can learn potential outcome models
- (3) No unmeasured confounders (NUC)

- Ensures that we do not learn biased models



(1) Consistency

- Consider a dataset containing observed outcomes,
observed treatments, and covariates:

(4’
{?/7;7 Uiy Xjpi—1
- E.g.: blood pressure, exercise, BMI

- Consistency allows us to replace the observed response
with the potential outcome of the observed treatment

Y2Y(a)| A=a

- Under consistency our dataset satisfies

{yiaaiaxi}?:1 = {yi(az),&z‘,Xi ?’:1



(2) Positivity

- When working with observational data, for any set of
covariates X we need to assume a non-zero
probability of seeing each treatment

-+ Otherwise, in general, cannot learn a conditional model
of the potential outcomes given those covariates

-+ Formally, we assume that

Pops(A=a | X =x)>0 Vaec A, Vxe X



(3) No Unmeasured Confounders (NUC)

+ In our exercise example, BMI is a confounder

- It iInduces a statistical dependency between the
observed treatment and observed outcome

+ In general, unless we observe all confounders, we
cannot learn unbiased models of potential outcomes from
observational data

- Formally, NUC is an statistical independence assertion:

Ya) LA|X=x : Vae A Vxe X

To explain NUC graphically, we introduce the graphical
notation of SWIGs.



Single-World Intervention Graphs

- SWIGs extend graphical models to explicitly represent
potential outcomes

- To obtain a SWIG, we define a causal graphical model
and specify the set of treatment variables

- We apply node-splitting operations to treatment
variables to represent interventions

Richardson and Robins, 2014

NIPS tutorial : 8 el L ] P


https://www.csss.washington.edu/Papers/wp128.pdf
https://www.microsoft.com/en-us/research/video/tutorial-non-parametric-causal-models/

We apply node-splitting operations to treatment
variables to represent interventions

A simple “a” vs “b” example:

Causal DAG
Treatment variable .

V.'

oo

Richardson, 2014

P
-
-
-
-
-
L=

“
-
-
-
-

Richardson and Robins, 2014


https://www.csss.washington.edu/Papers/wp128.pdf
https://www.microsoft.com/en-us/research/video/tutorial-non-parametric-causal-models/

Interpreting SWIGs

- Treat SWIGs as standard causal graphs

-+ Semi-circle nodes are just reminders that we have
applied a node-splitting operation

+ From this graph, can read that Y(a) is independent of the
observed treatment A

Richardson, 2014 Richardson and Robins, 2014


https://www.csss.washington.edu/Papers/wp128.pdf
https://www.microsoft.com/en-us/research/video/tutorial-non-parametric-causal-models/

NUC in SWIG Language

- SWIGs make NUC assumption easy to express
Y(a) LA X=x : Vae A, Vxe X

+ Confounders X d-separate potential outcomes from
observed treatment random variable when intervening on

treatment

g

oG

Richardson and Robins, 2014

Richardson, 2014


https://www.csss.washington.edu/Papers/wp128.pdf
https://www.microsoft.com/en-us/research/video/tutorial-non-parametric-causal-models/

Using Models to Adjust for Bias

+ Assume models of potential outcomes given covariates

{P(Y(a) | X=x):a € A}
- We can use them to adjust for bias in observational data

- Key idea: use models to “simulate” an RCT

Rubin 1977 B Robins 1986


http://jeb.sagepub.com/content/2/1/1.short
http://www.sciencedirect.com/science/article/pii/0270025586900886

Using Potential Outcomes Framework to

Simulate RCT

- Our observational data is drawn from

Q = P(X)Pops(A | x)P(Y | a,x) = P(X)Pobs(A4 | x}P(Y (a) | x)

- We want experimental data drawn from

P £ P(X)Prxp(A)P(Y | a,x) = P(X)Ppxp(A)P(Y(a) | x)
- If we know potential outcome models:

- Draw from empirical covariate distribution: X ~ {x;}>* ,

- Flip fair coin to assign treatment: A ~ Bern(0.5)

- Simulate outcome from model: P(Y (a) | X = x)



Learning Potential Outcome Models

-+ To simulate data from a new policy, we need to learn the
potential outcome models

- |f we have an observational dataset where
assumptions 1-3 hold, then this is possible!

+  Assumptions allow estimation of potential outcomes from
(observational) data:

PY(a)| X=x)=PY(a) | X=x,A=a) (A3)
=PY | X=x,A=a) (A1)



Exercise and Blood Pressure

- Returning to our exercise and blood pressure example

- We fit a model for blood pressure given exercise and BMI

- With estimated models, treatment effects are estimated

as.

Effect Estimate: 0.29

60 -

40 -

20-

60 -

40-

3S1v4
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“Simulated Effect Estimate: -0.87

3S7vA
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Going beyond PATE

PATE: Population Average Treatment Effect:

To account for the heterogeneous treatment effect among patients, it is more of
interest to look at CATE, the conditional average treatment effect:

Y (1) =Y(0) | C1 = c

See e.g.: Foster et al., 2011 g Imai et al., 2013 § Tian et al., 2014
Athey and Imbens, 2016



http://www.tandfonline.com/doi/abs/10.1080/01621459.2014.951443
http://projecteuclid.org/euclid.aoas/1365527206
http://onlinelibrary.wiley.com/doi/10.1002/sim.4322/full
http://www.pnas.org/content/113/27/7353

Sequential Treatment Assignment and Time-

Varying Confounding

- Interventions and observations are interleaved

- |Intervention effects future observations
Those observations affect future interventions
And so on...

- When can we disentangle to learn unbiased models of
potential outcomes?

- Also called time-varying confounding.

Robins 1986


http://www.sciencedirect.com/science/article/pii/0270025586900886

Sequential Treatment Assignment and Time-

Varying Confounding

- Interventions and observations are interleaved

- |Intervention effects future observations
Those observations affect future interventions
And so on...

+ As In single-treatment, single-outcome examples,
we need assumptions that allow us to link
conditional distributions to the target potential
outcome models

Robins 1986


http://www.sciencedirect.com/science/article/pii/0270025586900886

Estimating Individualized Treatments Effects From

Clinical Records

For many disease, response to therapy varies greatly across
individuals. To personalize therapy, we need to estimate at
the individual level their likely response to treatment.
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Distribution over Individualized Treatment

Response Curves

We wish to obtain uncertainty
estimate over an individual’s
treatment response over time.
And we want to estimate this
from routinely collected data
* sparse, irregularly sampled
clinical time series

Creatinine

0 10 20 30 40 50

Time (hours

- Population averages vs. Individualized Estimates
- Refined as new measurements are collected on the
individual
- Point-in-time vs. Treatment Response Curve



SWIG for Sequential Setting

- The SWIG is:

- The SWIG shows us that for each outcome, conditioning on
previous outcomes d-separates from observed treatments

P(Y1 =y1)P(Ya(a1) = y2 | Y1 = y1)P(Y3(a1,a2) = y3 | Y1 = y1, Ya(a1) = y2)
=PYi=n)PYo=yp | Y1i=y1,A1=a1)P(Ys=y3 | Y1 =y1,Yo =92, A1 = a1, A3 = ao)

Robins 1986


http://www.sciencedirect.com/science/article/pii/0270025586900886

Approach: g-formula

Robins 1986

For patient i:
Observations Y; = {Yi1, ..., Yis,} measured at times t; = {ti1,...,tiJ; }

Treatments A; = {4, ..., Ai,} prescribed at times 7; = {7i1, ..., TiL, }

A set of covariates C;; € RP

Estimation requires a statistical model for estimating conditionals:

P(Yijla;j,a:<j—1,¥i,<j—1, Cyj)

Likelihood based approach; use flexible BNP to reduce error
due to model mis-specification

Ferguson, 1973 Miller and Mitra, 2013 Miiller and Rodriguez, 2013

Other estimation techniques can be used.

Xu et al., 2016



https://arxiv.org/abs/1608.05182
http://www.jstor.org/stable/2958008?seq=1#page_scan_tab_contents
https://projecteuclid.org/euclid.cbms/1362163742
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3870167/
http://www.sciencedirect.com/science/article/pii/0270025586900886

ITR: Additive Treatment Effects

Yi | a;,c; = ui(c;) +  fila;))  + €
baseline progression  treatment responses  NO1s€
ai = 5
] ] N \é‘-’ &\)\
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Xu et al., 2016
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https://arxiv.org/abs/1608.05182

Choices to reduce error due to model mis-

specification
Y | ai,c; = ui(c;) + fi(a;) T €
N— N— N~

baseline progression ~ treatment responses ~ NOise

/ I
Gaussian Process to flexible
model longitudinal traces

Dirichlet Process mixture prior to cluster
treatment response and baseline

progressmn parameters /e

A Each individual samples its BUER S e
- }: parameters from a cluster mean e
W ORI - No bias due to assuming that s
. & Gy  Clusters are of equal size or a fixed |*1* oo
“ gy “T7-. number of clusters e

) - Posterior Predictive: Estimates

PP . refined with new data

Ferguson, 1973
Xu et al., 2016



https://arxiv.org/abs/1608.05182
http://www.jstor.org/stable/2958008?seq=1#page_scan_tab_contents

Heterogeneous Ireatment Response

Data: EHR collected over two years at Howard County General Hospital from 2013-2015. 300 ICU
patients who were prescribed at least one of the treatments.

Vasopressor:
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Fluid_bolus:
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https://arxiv.org/abs/1608.05182

- Part 1—Setting up the problem of Individualization

Overview

- Example using a chronic disease

- Simple setting: No Treatment Effects

- Bayesian Hierarchical Framework for Individualizing Predictions
- Key ideas: Transfer learning, Multilevel modeling

- Part 2—Estimating Treatment Effects & Individualized Treatment

Effects
- Example using inpatient data

- Learning from observational data No Control
. . . . over Data
- Key ideas: Potential Outcomes, Causal Inference for Bias Adjustment, Collection
BNP Process
 Part 3—Causal Predictions
- Relax assumption from Part 1 about no treatment effects
- Discuss predictions that are robust to changes in physician practice
behavior
Control
- Part 4—From Predictions to Treatment Rules
. . . . over Data
- Key ideas: Q-learning, Dynamic Treatment Regimes Collection

-+ Connections to Reinforcement Learning Process
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Continuous Monitoring
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Use supervised learning for distinguishing patients with AE from those without
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Pneumonia Severity Index: Risk of Mortality

- |dentify candidate risk factors

+ Learn score and relative weights by regressing against

observed mortality

*Age
(1 point per year)
Male Yr
Female Yr -10

* Nursing home
residency +10

- 4

| (<50)

Il (51-70)
I (71-90)
IV (91-130)
V (>130)

Demographics @ Co-morbidities

= Neoplasia +30
» Liver disease +20
* CHF +10

= Cerebrovascular
disease +10

» Renal disease +10

Physical exam / Laboratory /
vital signs imaging |

= Mental confusion +20
» Respiratory rate +20
« SBP +20

* Temperature +15

* Tachycardia +15

- ,

Risk class Mortality (%) Recommended site of care
(Points)

& 4

= Arterial pH +30
* BUN +20
» Sodium +20
* Glucose +10
* Hematocrit +10
* Pleural effusion +10

\KOxygenatlon +10 j

I 0.1 Outpatient
I 0.6 Outpatient
| 2.8 Outpatient or brief inpatient
| 8.2 Inpatient
| 29.2 Inpatient

Fine et al., N Engl J Med 336 (4): 243—-250, 1997



http://www.nejm.org/doi/full/10.1056/NEJM199701233360402#t=article

But, inferventions censor the true label.

Using Adverse
Presence of Event Onset

AE as /

fluid bolus fluid bolus
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https://dl.dropboxusercontent.com/u/20167181/developing-predictive-models-amia-final.pdf
http://link.springer.com/article/10.1007/s10994-015-5527-7

But, inferventions censor the true label.

Using Adverse
Presence of Event Onset
AE as /
aW ———
I fluid bolus fluid bolus

(1) Learnt Risk Estimates are Highly Sensitive to
Provider Practice Pattern
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https://dl.dropboxusercontent.com/u/20167181/developing-predictive-models-amia-final.pdf
http://link.springer.com/article/10.1007/s10994-015-5527-7

Challenge: Learnt Risk Estimates

Sensitive to Provider Practice Pattern

- Simple example (Flu)
- Measure temperature
- Measure WBC

. Increase in temperature or WBC increases risk of death

TreatmentProbability -+ 0.00

1.00 -

> -

25,075

3 E

© 2050~

o Y

a C0o5-
0.00 -

1 1 1 I 1 I
08 100 102 104 106 108
Temperature (F)

Dyagilev et al., 2016


http://link.springer.com/article/10.1007/s10994-015-5527-7

Challenge: Learnt Risk Estimates Sensitive

to Provider Practice Pattern

Key idea:

- Consider a unit where patients get treated as temperature
increases above say, 102 degrees

- Therefore, fewer deaths due to rising temperature

. As fewer individuals experience death, the algorithm no
longer associates rise in temperature with risk.

Dyagilev et al., 2016


http://link.springer.com/article/10.1007/s10994-015-5527-7

Bias Due to Interventional Confounds

- Model flu severity; temperature is observed

- Example: Synthetic-Pneumonia
- If flu, temperature increases unless medicated

- When medicated, temperature returns to normal
- At 108 deg F, subject dies

- Consider hospitals with different practice patterns:
P(med | temperature)

p=1 p=0.3 p=0.3 p=0.3 p=1
No antibiotics: 6 60——6——6 6
p=0.2 p=0.5
p=1 p=1 p=1 p=1 p=1
With antibiotics: a ‘ ‘ ‘ 6

Treatment practice:
(1) no antibioticsfor T < 102 deg F;
(2) administerantibiotics with probability p forT = 102 deg F




Bias Due to Interventional Confounds

- Model flu severity; temperature is observed

- Simulate using Synthetic-Pneumonia model:

. If flu, temperature increases unless medicated

- When medicated, temperature returns to normal
- At 108 deg F, subject dies

- Consider hospitals with different practice patterns:
P(med | temperature)

Probability
of dying
© o =
S & 38

o
N 1
(o))

=

| I | I I
98 100 102 104 106 108
Temperature (F)

o
o
o

Dyagilev et al., 2016


http://link.springer.com/article/10.1007/s10994-015-5527-7

Bias Due to Interventional Confounds

Vary provider practice patterns between train and test:

Scenario || piain | plram = plest | plest T ogistic Regression | L-DSS

#1 0 0 0 0 0.974 0.973

#2 0.1 0 0.1 0 0.978 0.990

#3 0.1 0 0 0 0.963 0.974

w4 0.3 0 0 0 0.769 0.973

#5 0.3 0 0 0.3 0.510 0.978

/ \ Increasing discrepancy in

Increase probability physician prescription behavior
of treating for rising In train vs. test environment
temperature

Learned risk scores are high sensitive to changes
In provider practice patterns:

* Resulting risk scores are also less interpretable

* They violate construct validity [Medsger et al., 2003]

Dyagilev et al., 2016


http://link.springer.com/article/10.1007/s10994-015-5527-7

Alternate forms of training and supervision?

septic shock
onset

/\J

111111

s
- oo .

E I I I = N = = .

-

|l - O . = = = = =
. "

-
-
-

interventions

Instead:

get severity
- annotation directly?

Regression

Often not practical because
getting these annotations are
challenging.



Alternate forms of training and supervision?

septic shock
onset

/\J

1 S

11111

interventions

compare
severity
annotations

Instead:

get severity
- annotation directly?

111111

Regression Comparison Pairs:  PYEI{UEAIE My LIT

Today: Joint modeling of states and actions

Transportability not always possible: LEELGTTIT BT Tl L=E Ty M i ] ke



http://link.springer.com/article/10.1007/s10994-015-5527-7
http://ftp.cs.ucla.edu/pub/stat_ser/r443.pdf

Causal Predictions

- Learnt risk is conditional on prescription patterns.

- Statistical model’s predictions may capture
correlations that depend on provider practice

- E.g. "treat when temperature rises above 100"

- What we observe is “what happens if they receive the
treatments they did receive”

- The desired target is: “what is likely to happen to this

patient given their history if we do not treat vs treat”
We will refer to this idea as estimating the causal risk.

Bottou et al., 2012


http://www.jmlr.org/papers/volume14/bottou13a/bottou13a.pdf

Personalization and Potential Outcomes

- Recall example application from Section 1
- Potential outcomes allow “what if?” reasoning

- To select best treatment for an individual, we can
examine expected outcomes under each choice

120 -

he | aff o TEy@ H-h
T T gy H=N

60 -

40 - -

I T I I

0 5 10 15
Years Since First Symptom



Personalization and Potential Outcomes

What is the future trajectory under different sequences of interventions?

Previous

clinical ==<J=~<]
N ~A
markers  _ N

¢' 100_ ~§

Ity
p
&

History H=h °

Lung Capac

|
5 10 15

0
Schulam and Saria, 2017 Years Since First Symptom



https://arxiv.org/abs/1703.10651

Personalization and Potential Outcomes

- What if we administer another dose of Drug B?

120 -

History H=h °

Lung Capacity

. i E[Y (1) | H = h]
DrugA === :
DrugB = ===~ I:_ R :
~~A ‘ 1 .
407 | 11 ;( 1) |

|
10 15

0
Schulam and Saria, 2017 Years Since First Symptom

&)



https://arxiv.org/abs/1703.10651

Personalization and Potential Outcomes

What about another dose of Drug A?

120 - :
. :
I‘ ----- ‘ I
e 100 - '
o’ 3 ’... :
History H=h '© :
IStory % - % ' E[Y(I) | H = h]
o G
8 80 - ° : .......................
O) v e
. e
3 e
N : E[Y ()| H=h]
DrugA ==-<._ :
DrugB =====« I:. Tt :
~~A ‘ ] =
40 - . ;( ! ) '

|
5 10 15

0
Schulam and Saria, 2017 Years Since First Symptom



https://arxiv.org/abs/1703.10651

Personalization and Potential Outcomes

What about two sequential doses of Drug A?

120 - :
e al ° : E[Y (@ )) | H = h]
.7 100 - I
" -Z" %, Y I S
: = o ® v
History B = b g A F R g E[Y (1) | H=h
O N LT
S so-| | R
> T
= e
— : E[Y(F) | H = h]
DrugA === '
Drug B ======f _ S :
~~A ‘ 1 ) .
ol T y(nfn) |

|
5 10 15

0
Schulam and Saria, 2017 Years Since First Symptom



https://arxiv.org/abs/1703.10651

Trajectory-Valued Potential Outcomes

In the single-treatment, single-outcome case we learned
models of the potential outcomes and used them to
simulate experimental results

- We want to transplant this idea to the individual level:

- Can we learn personalized trajectory-valued potential
outcome models?

- |f so, can we use those models to simulate
experiments that investigate the effect of different
treatment decisions for this person?

Schulam and Saria, 2017


https://arxiv.org/abs/1703.10651

: Sequential Treatment Assignment and

Time-Varying Confounding
- Interventions and observations are interleaved
- |Intervention effects future observations

Those observations affect future interventions
And so on...

- When can we disentangle to learn unbiased models of
potential outcomes?

- Also called time-varying confounding.

Robins 1986


http://www.sciencedirect.com/science/article/pii/0270025586900886

: SWIG for Sequential Setting

- Assumptions: (1) Consistency, (2) Sequential Ignorability

(NUC) e
i 4
(7, e o)

@

- The SWIG shows us that for each outcome, conditioning on
previous outcomes d-separates from observed treatments

P(Y1 =y1)P(Ya(a1) = y2 | Y1 = y1)P(Y3(a1,a2) = y3 | Y1 = y1, Ya(a1) = y2)
=PYi=y1)PYo=w |Yi=y1,41 =a)PYs=y3 | Y1 =y1,Y2 = y2, A1 = a1, As = a2)

Robins 1986



http://www.sciencedirect.com/science/article/pii/0270025586900886

Handling Irregularity

- In an irregular trace (i.e. sequence of interleaved actions
and observations), there can be multiple observations
between actions:

h; = [(yi1,ti1), (a1, T51), (Yiz, tio), (Vis, tis)]-

- We can handle irregularly sampled observations and
treatments in a similar way [Part 1 and Part 2]

- We assume measurements are missing at random i.e.
the choice of when to measure depends on the past
observed data [Recall from Part 1]



Factoring Irregular Traces

-+ We can still factor these traces as we would regularly
sampled traces (see paper for details)

+ Define:
Y. to be the observations prior to action k
ar to be the actions taken prior to action k
- Y, to be observations after action k, but before k+1
+ Then we can factor an arbitrary trace:

p(h ‘ X) :p(YO ‘ X) Hp(akaTk | ykaékax)p(Ykz | ykaakaTkaékax)a

k=1
Schulam and Saria, 2017



https://arxiv.org/abs/1703.10651

Irregular Traces and Functional Potential Outcomes

Assuming Consistency and Sequential NUC (see paper for details)

p(Yk | S’k, Ak, Tk, éka X) — p(Yk(aka Tk) ‘ S’k? ék? X)
Therefore can maximize probability of irregular trace:

p(h | X) :p(yO | X) Hp(a’kaTk | ykaékax)p(yk | }_’k,ak,Tk,ak,X),
k=1

Policy is unknown, but assumed to be distinct so we can ignore the treatment
policy terms when learning functional potential outcome models

Recall:

- Our observational data is drawn from

Q £ P(X)Pobs(4 | X)P(Y | a,x) = P(X)Pobs(4 | x)P(Y(a) | x)

- We want experimental data drawn from

P £ P(X)Pgxp(A)P(Y | a,%) = P(X)Prxp(A)P(Y () | x)
Schulam and Saria, 2017


https://arxiv.org/abs/1703.10651

Modeling Irregular Traces

Many different ways to model conditional distributions
over markers (green component in last slide)

One example: Gaussian process

GP( m(;a,x),k(-,-) )

., )
Mean function depending on K Covariance function

covariates and sequence of treatments iIndependent of treatments

Schulam and Saria, 2017


https://arxiv.org/abs/1703.10651

Modeling Irregular Traces

Many different ways to model conditional distributions
over markers (green component in last slide)

One example: Gaussian process

GP( mZ(v a, X)? ki('? ) )

Recall individualization approach from Part 1:

Yij|Tip, zis bi ~ N | @p(tiy) "A Tip+ @2(ti;) " By + Poltiy) "bi + fi(tiz) ,0°
(A) population (B) subpopulation (C) individual (D) structured noise )

Schulam and Saria, 2017


https://arxiv.org/abs/1703.10651

Example: Lung Disease Trajectories

Using previous lung disease progression patterns and
learning from response to treatment, we can predict how
individuals will respond to treatment and how they will
progress when treatment is no longer given

Example 2 Example 3
2 Example 1 ™
g AAMpe o o ® ® 9 -.I%N\
S v 1Tt
0 o
E .\,\\
+ °
>
@) 1 1 1 1 1 I I I I 1
D 130 -
S X 110
00 25 50 7.5 10.0 7 e ®esle®
° -
Years Seen 1 90 \
Prednisone =~ Hydroxychloroquine No Rx ;O) ] No Rx

Methotrexate © Cytoxan DO 25 50 7.5 10( 0.0 25 50 7.5 10.C



Predicting trajectories for Targeting Treatments in

Critically lll Patients

o

MA

MAP

140
130
120
110
100
90
80
70
60

120
110
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90
80
70
60
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40
30

I | | | I 10 I I 1
L. Patient ID 116053 e
| SN :
- 61l |
- 4+ -
. 2t ]
FL(+) FL(+) ®%e® . FL(+) FL(+)  BB() BB(-) )
] ] ] ] . J . 0 ] ] ] ]
1 2 3 4 5 6 0 5 10 15 20 25
Days Since ICU Admission Hours
(a) Example Trajectory of MAP and Treatment Response Curve of Fluid (FL)
'®. I I ' Al . I 10 I I I -
— TR : : : . — VP(+)
| . L Patient ID 120794 — VP(++)
E ' - . 8+t FL+) H
: 6 .
; af :
IR 1 2t :
FL(+) TF(+) FL(+) FL(+) FL(+)  VP(++) VP(++) VP(+) : .
L | 1 P 1 X 1 O \ ) \
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Days Since ICU Admission Hours

(b) Example Trajectory of MAP and Treatment Response Curves of Vasopressor (VP) and Fluid (FL)

Xu et al.,, 2016 @@ Liu et al., 2016


https://arxiv.org/abs/1608.05182
http://www.homepages.ucl.ac.uk/~ucgtrbd/whatif/Paper19.pdf

Caveats In Practice and Discussion

- Estimates of the individual components within the statistical model may not be
good enough based on available data

 Not enough data to train from.
- Avalilable measurements are not predictive.

Inferences are correct assuming no model mis-specification.
Important aspect of causal modeling is getting your causal assumptions right.

- Think hard about the problem—> avoids the chance of model mis-
specification or making incorrect assumptions.

- Semi-parametric or flexible nonparametric strategies are helpful here.
- Methods to check sensitivity to assumption (e.g., posterior predictive checks)

- Driving modeling decisions based on practical utility
- Decisions are made with a human in the loop.
- Transparency does not have to be interpreted as the use of a linear model
or a decision tree.

Estimating intermediate quantities that are interpretable or can serve as
validation can be useful (e.g., subpopulation, individual-specific deviations)

- Need ways to monitor performance over time.



- Part 1—Setting up the problem of Individualization

Overview

- Example using a chronic disease

- Simple setting: No Treatment Effects

- Bayesian Hierarchical Framework for Individualizing Predictions
- Key ideas: Transfer learning, Multilevel modeling

- Part 2—Estimating Treatment Effects & Individualized Treatment

Effects
- Example using inpatient data

- Learning from observational data No Control
' i : . over Data
- Key ideas: Potential Outcomes, Causal Inference for Bias Adjustment, Collection
SNP Process

- Part 3—Causal Predictions

- Relax assumption from Part 1 about no treatment effects

- Discuss predictions that are robust to changes in physician practice
behavior

- Part 4—From Predictions to Treatment Rules

over Data
Collectipn
Proces

- Key ideas: Q-learning, Dynamic Treatment Regimes
+ Connections to Reinforcement Learning




Sequential Decision Making

A mapping of states to actions
In reinforcement learning, this is called a sequential
policy
In treatment planning, sequential policies called
dynamic treatment regime

States are functions of an individual’s clinical history,
and the policy maps these histories to actions.

The nodes that an
action node is
dependent on
provides the context
' upon which the
Times at which decision depends
decisions are made



Sequential Treatments

- To obtain such a policy,

- we can use model based or model-free methods

+ we use learn by either interacting with the world or learn
from offline data.

- Loosely speaking,

- model-based learns a dynamical model of the system
(e.g., an MDP)—> as a by-product, also make predictions

- for model-free methods, you evaluate the policy directly

using traces Review:


http://www.cs.mcgill.ca/~jpineau/files/cpaduraru-jmlr2013.pdf

Learning by Interacting with the World

- Basic Q-learning algorithm

Q-function or the action-value function

S _ Watkins 1989
Initialize Q-functions and update as you explore.



https://www.cs.rhul.ac.uk/home/chrisw/thesis.html

Learning by Interacting with the World

- Basic Q-learning algorithm

Watkins 1989

Review:

Ghavamzadeh et al., 2015



http://www.nowpublishers.com/article/Details/MAL-049
https://www.cs.rhul.ac.uk/home/chrisw/thesis.html

Safe Reinforcement Learning

-+ Two broad approaches to safe RL

Garcia and Fernandez, 2015

- Modifying optimization criterion (notion of reward)

-+ Penalize movement through “error states”

Geibel and Wysotzki, 2005

- Modifying exploration strategies
- Incorporate domain knowledge

- Apprenticeship: seed MDP parameters using a
teachers demonstration


http://www.jmlr.org/papers/volume16/garcia15a/garcia15a.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/icml2005_AbbeelN05.pdf
http://www.aaai.org/Papers/JAIR/Vol24/JAIR-2403.pdf
http://link.springer.com/chapter/10.1007/978-3-642-04772-5_11

Dynamic Treatment Regimes: Learning
from Offline Data

Q

P(Yg(Al = Tl, Ag — T2)|Y1)

Optimal
decision at argmax 4 Inaxa4, f(P(YS (Ah AQ) ‘Yl))

time 1

Murphy 2003
Dudik et al., 201 | Robins 2004 | Blatt et al., 2004
Jiang and Li, 2016 Rothgj et al., 2006 | Henderson et al., 2010 | Almirall et al., 2010



https://arxiv.org/abs/1103.4601
http://jmlr.org/proceedings/papers/v48/jiang16.pdf
http://onlinelibrary.wiley.com/doi/10.1111/1467-9868.00389/abstract
http://onlinelibrary.wiley.com/doi/10.1002/sim.2694/full
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.67.8997&rep=rep1&type=pdf
http://dept.stat.lsa.umich.edu/~samurphy/papers/Alearning2004.pdf
http://onlinelibrary.wiley.com/doi/10.1111/j.1541-0420.2009.01368.x/full
http://onlinelibrary.wiley.com/doi/10.1111/j.1541-0420.2009.01238.x/full

Dynamic Treatment Regimes: Learning

from Offline Data

Q

P(Yg(Al = Tl, Ag — T2)|Y1)

P(Y3(A1 =Tz, A2 =Th)|Y1)

Optimal
decision at argmax 4 Inaxa4, f(P(YS (Al ; AQ) ‘Yl))
time 1 Murphy 2003

Dudik et al., 201 | Robins 2004 | Blatt et al., 2004
Jiang and Li, 2016 Rothgj et al., 2006 | Henderson et al., 2010

Almirall et al., 2010



http://onlinelibrary.wiley.com/doi/10.1111/1467-9868.00389/abstract
https://arxiv.org/abs/1103.4601
http://jmlr.org/proceedings/papers/v48/jiang16.pdf
http://onlinelibrary.wiley.com/doi/10.1002/sim.2694/full
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.67.8997&rep=rep1&type=pdf
http://dept.stat.lsa.umich.edu/~samurphy/papers/Alearning2004.pdf
http://onlinelibrary.wiley.com/doi/10.1111/j.1541-0420.2009.01368.x/full
http://onlinelibrary.wiley.com/doi/10.1111/j.1541-0420.2009.01238.x/full

Sequential Multiple Assignment, Randomized Trial

(SMART)
EXTENd(PI: Oslin): Treatment of Alcohol Dependence

Rationale:

Naltrexone (NTX, an opiate antagonist) 1s efficacious but

* AI‘OllIld 1/ 3 Of pa.tlents 1‘elapse First-stage Intermediate Second-stage
While on NTX intervention outcome intervention
* Hence, need to develop rescue NTX B o
. § NTX + Lenient Week 8 % NTX + TDM ;’l b
tactics for non-responders i | Definition of Responders
non-response
- ' 110G CBI Z
* And long-term maintenance ta.ctlcsg W—— aers®<| *’l :
to for responders ; NTX+cBI [ d
» Because of various barriers: NTX _.| .
] Week 8 C‘K
Physmloglcal/socml/psychologlcal NTX + Stringent | 21 esponders NTX + TDM »I' f
g non-response e H .
. Non-Responders@( TE— H "
Trials for evaluati_ng sequential Treatment  NTX-> Naltrexone [opioid antagonist) il 2
treatment strategles. Qutset TDM=> Telephone Disease Management
Assignment iS adaptive CBI=> Combined Behavioral Intervention

Lenient Definition = 5+ heavy drinking days in 1 week
Stringent Definition = 2+ heavy drinking days in 1 week

Slide from Inbal (Billie) Nahum-Shani, Nick Seewald, Susan Murphy



Conclusion & Discussion

- Need for individualization based on diverse data.

- QOur practice of medicine will change radically in at least some areas in the next
decade and there is an exciting opportunity for us to make a difference.

- Bayesian Hierarchical Framework for Individualizing Predictions
- Motivated latent sources of variability that can be inferred to refine predictions
- Discussed the problem of inferring disease trajectories

- Estimating Treatment Effects & Individualized Treatment Effects

- Learning from observational data
-+ Key ideas: Potential Outcomes, Causal Inference for Bias Adjustment, BNP

- Causal Predictions

- Relax assumption from Part 1 about no treatment effects
- Discuss predictions that are robust to changes in physician practice behavior

- From Predictions to Treatment Rules

-+ Connections to Reinforcement Learning, Dynamic Treatment Regimes,
SMART



Publicly available datasets

HealthData.gov

@ Health x
flfi) State (66)

383 Community (60)

flil National (S0)

o | Medicare (49)

Hospital (42)

V4 Quality (33)
% Inpatient (29)




Thank you!

ssaria@cs.jhu.edu
www.suchisaria.com

@suchisaria

pschulam@cs.jhu.edu

www.pschulam.com
@pschulam
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